|
|
@ -4,7 +4,6 @@ use ark_ff::fields::PrimeField; |
|
|
|
use ark_std::log2;
|
|
|
|
use ark_std::{cfg_into_iter, Zero};
|
|
|
|
use std::marker::PhantomData;
|
|
|
|
use std::ops::Add;
|
|
|
|
|
|
|
|
use ark_poly::{
|
|
|
|
univariate::{DensePolynomial, SparsePolynomial},
|
|
|
@ -65,12 +64,9 @@ where |
|
|
|
let f_w = eval_f(r1cs, &w.w);
|
|
|
|
|
|
|
|
// F(X)
|
|
|
|
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
|
|
|
|
for (i, f_w_i) in f_w.iter().enumerate() {
|
|
|
|
let lhs = pow_i_over_x::<C::ScalarField>(i, &instance.betas, &deltas);
|
|
|
|
let curr = &lhs * *f_w_i;
|
|
|
|
F_X = F_X.add(curr);
|
|
|
|
}
|
|
|
|
|
|
|
|
let F_X: SparsePolynomial<C::ScalarField> =
|
|
|
|
calc_f_from_btree(&f_w, &instance.betas, &deltas);
|
|
|
|
|
|
|
|
let F_X_dense = DensePolynomial::from(F_X.clone());
|
|
|
|
transcript.add_vec(&F_X_dense.coeffs);
|
|
|
@ -287,24 +283,6 @@ fn pow_i(i: usize, betas: &Vec) -> F { |
|
|
|
r
|
|
|
|
}
|
|
|
|
|
|
|
|
fn pow_i_over_x<F: PrimeField>(i: usize, betas: &Vec<F>, deltas: &Vec<F>) -> SparsePolynomial<F> {
|
|
|
|
assert_eq!(betas.len(), deltas.len());
|
|
|
|
|
|
|
|
let n = 2_u64.pow(betas.len() as u32);
|
|
|
|
let b = bit_decompose(i as u64, n as usize);
|
|
|
|
|
|
|
|
let mut r: SparsePolynomial<F> =
|
|
|
|
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
|
|
|
|
for (j, beta_j) in betas.iter().enumerate() {
|
|
|
|
if b[j] {
|
|
|
|
let curr: SparsePolynomial<F> =
|
|
|
|
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, *beta_j), (1, deltas[j])]);
|
|
|
|
r = r.mul(&curr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
r
|
|
|
|
}
|
|
|
|
|
|
|
|
// lagrange_polys method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
|
|
|
|
fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<DensePolynomial<F>> {
|
|
|
|
let mut lagrange_polynomials: Vec<DensePolynomial<F>> = Vec::new();
|
|
|
@ -317,6 +295,46 @@ fn lagrange_polys(domain_n: GeneralEvaluationDomain) -> Vec |
|
|
|
lagrange_polynomials
|
|
|
|
}
|
|
|
|
|
|
|
|
fn calc_f_from_btree<F: PrimeField>(fw: &[F], betas: &[F], deltas: &[F]) -> SparsePolynomial<F> {
|
|
|
|
assert_eq!(fw.len() & (fw.len() - 1), 0);
|
|
|
|
assert_eq!(betas.len(), deltas.len());
|
|
|
|
let mut layers: Vec<Vec<SparsePolynomial<F>>> = Vec::new();
|
|
|
|
let leaves: Vec<SparsePolynomial<F>> = fw
|
|
|
|
.iter()
|
|
|
|
.enumerate()
|
|
|
|
.map(|e| SparsePolynomial::<F>::from_coefficients_slice(&[(0, *e.1)]))
|
|
|
|
.collect();
|
|
|
|
layers.push(leaves.to_vec());
|
|
|
|
let mut currentNodes = leaves.clone();
|
|
|
|
while currentNodes.len() > 1 {
|
|
|
|
let index = layers.len();
|
|
|
|
let limit: usize = (2 * currentNodes.len())
|
|
|
|
- 2usize.pow(
|
|
|
|
(currentNodes.len() & (currentNodes.len() - 1))
|
|
|
|
.try_into()
|
|
|
|
.unwrap(),
|
|
|
|
);
|
|
|
|
layers.push(vec![]);
|
|
|
|
for (i, ni) in currentNodes.iter().enumerate().step_by(2) {
|
|
|
|
if i >= limit {
|
|
|
|
layers[index] = currentNodes[0..limit].to_vec();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
let left = ni.clone();
|
|
|
|
let right = SparsePolynomial::<F>::from_coefficients_vec(vec![
|
|
|
|
(0, betas[layers.len() - 2]), // FIXME
|
|
|
|
(1, deltas[layers.len() - 2]), // FIXME
|
|
|
|
])
|
|
|
|
.mul(¤tNodes[i + 1]);
|
|
|
|
|
|
|
|
layers[index].push(left + right);
|
|
|
|
}
|
|
|
|
currentNodes = layers[index].clone();
|
|
|
|
}
|
|
|
|
let root_index = layers.len() - 1;
|
|
|
|
layers[root_index][0].clone()
|
|
|
|
}
|
|
|
|
|
|
|
|
#[derive(Clone, Debug)]
|
|
|
|
pub struct R1CS<F: PrimeField> {
|
|
|
|
pub A: Vec<Vec<F>>,
|
|
|
@ -445,29 +463,6 @@ mod tests { |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_pow_i_over_x() {
|
|
|
|
let mut rng = ark_std::test_rng();
|
|
|
|
let t = 3;
|
|
|
|
let n = 8;
|
|
|
|
let beta = Fr::rand(&mut rng);
|
|
|
|
let delta = Fr::rand(&mut rng);
|
|
|
|
let betas = powers_of_beta(beta, t);
|
|
|
|
let deltas = powers_of_beta(delta, t);
|
|
|
|
|
|
|
|
// compute b + X*d, with X=rand
|
|
|
|
let x = Fr::rand(&mut rng);
|
|
|
|
let bxd = vec_add(&betas, &vec_scalar_mul(&deltas, &x));
|
|
|
|
|
|
|
|
// assert that computing pow_over_x of betas,deltas, is equivalent to first computing the
|
|
|
|
// vector [betas+X*deltas] and then computing pow_i over it
|
|
|
|
for i in 0..n {
|
|
|
|
let pow_i1 = pow_i_over_x(i, &betas, &deltas);
|
|
|
|
let pow_i2 = pow_i(i, &bxd);
|
|
|
|
assert_eq!(pow_i1.evaluate(&x), pow_i2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_eval_f() {
|
|
|
|
let r1cs = get_test_r1cs::<Fr>();
|
|
|
|