|
|
use bellperson::{
gadgets::{boolean::AllocatedBit, num::AllocatedNum},
ConstraintSystem, SynthesisError,
};
use ff::{PrimeField, PrimeFieldBits};
use generic_array::typenum::U8;
use neptune::{
circuit::poseidon_hash,
poseidon::{Poseidon, PoseidonConstants},
};
use nova_snark::{gadgets::ecc::AllocatedPoint, traits::circuit::StepCircuit};
use subtle::Choice;
// An affine point coordinate that is on the curve.
#[derive(Clone, Copy, Debug)]
pub struct Coordinate<F>
where
F: PrimeField<Repr = [u8; 32]>,
{
pub x: F,
pub y: F,
pub is_infinity: bool,
}
impl<F> Coordinate<F>
where
F: PrimeField<Repr = [u8; 32]>,
{
// New affine point coordiante on the curve so is_infinity = false.
pub fn new(x: F, y: F) -> Self {
Self {
x,
y,
is_infinity: false,
}
}
}
// An ECDSA signature
#[derive(Clone, Debug)]
pub struct EcdsaSignature<Fb, Fs>
where
Fb: PrimeField<Repr = [u8; 32]>,
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
{
pk: Coordinate<Fb>, // public key
r: Coordinate<Fb>, // (r, s) is the ECDSA signature
s: Fs,
c: Fs, // hash of the message
g: Coordinate<Fb>, // generator of the group; could be omitted if Nova's traits allow accessing the generator
}
impl<Fb, Fs> EcdsaSignature<Fb, Fs>
where
Fb: PrimeField<Repr = [u8; 32]>,
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
{
pub fn new(pk: Coordinate<Fb>, r: Coordinate<Fb>, s: Fs, c: Fs, g: Coordinate<Fb>) -> Self {
Self { pk, r, s, c, g }
}
}
// An ECDSA signature proof that we will use on the primary curve
#[derive(Clone, Debug)]
pub struct EcdsaCircuit<F>
where
F: PrimeField<Repr = [u8; 32]>,
{
pub z_r: Coordinate<F>,
pub z_g: Coordinate<F>,
pub z_pk: Coordinate<F>,
pub z_c: F,
pub z_s: F,
pub r: Coordinate<F>,
pub g: Coordinate<F>,
pub pk: Coordinate<F>,
pub c: F,
pub s: F,
pub c_bits: Vec<Choice>,
pub s_bits: Vec<Choice>,
pub pc: PoseidonConstants<F, U8>,
}
impl<F> EcdsaCircuit<F>
where
F: PrimeField<Repr = [u8; 32]>,
{
// Creates a new [`EcdsaCircuit<Fb, Fs>`]. The base and scalar field elements from the curve
// field used by the signature are converted to scalar field elements from the cyclic curve
// field used by the circuit.
pub fn new<Fb, Fs>(
num_steps: usize,
signatures: &[EcdsaSignature<Fb, Fs>],
pc: &PoseidonConstants<F, U8>,
) -> (F, Vec<Self>)
where
Fb: PrimeField<Repr = [u8; 32]>,
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
{
let mut z0 = F::zero();
let mut circuits = Vec::new();
for i in 0..num_steps {
let mut j = i;
if i > 0 {
j = i - 1
};
let z_signature = &signatures[j];
let z_r = Coordinate::new(
F::from_repr(z_signature.r.x.to_repr()).unwrap(),
F::from_repr(z_signature.r.y.to_repr()).unwrap(),
);
let z_g = Coordinate::new(
F::from_repr(z_signature.g.x.to_repr()).unwrap(),
F::from_repr(z_signature.g.y.to_repr()).unwrap(),
);
let z_pk = Coordinate::new(
F::from_repr(z_signature.pk.x.to_repr()).unwrap(),
F::from_repr(z_signature.pk.y.to_repr()).unwrap(),
);
let z_c = F::from_repr(z_signature.c.to_repr()).unwrap();
let z_s = F::from_repr(z_signature.s.to_repr()).unwrap();
let signature = &signatures[i];
let r = Coordinate::new(
F::from_repr(signature.r.x.to_repr()).unwrap(),
F::from_repr(signature.r.y.to_repr()).unwrap(),
);
let g = Coordinate::new(
F::from_repr(signature.g.x.to_repr()).unwrap(),
F::from_repr(signature.g.y.to_repr()).unwrap(),
);
let pk = Coordinate::new(
F::from_repr(signature.pk.x.to_repr()).unwrap(),
F::from_repr(signature.pk.y.to_repr()).unwrap(),
);
let c_bits = Self::to_le_bits(&signature.c);
let s_bits = Self::to_le_bits(&signature.s);
let c = F::from_repr(signature.c.to_repr()).unwrap();
let s = F::from_repr(signature.s.to_repr()).unwrap();
let circuit = EcdsaCircuit {
z_r,
z_g,
z_pk,
z_c,
z_s,
r,
g,
pk,
c,
s,
c_bits,
s_bits,
pc: pc.clone(),
};
circuits.push(circuit);
if i == 0 {
z0 =
Poseidon::<F, U8>::new_with_preimage(&[r.x, r.y, g.x, g.y, pk.x, pk.y, c, s], pc).hash();
}
}
(z0, circuits)
}
// Converts the scalar field element from the curve used by the signature to a bit represenation
// for later use in scalar multiplication using the cyclic curve used by the circuit.
fn to_le_bits<Fs>(fs: &Fs) -> Vec<Choice>
where
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
{
let bits = fs
.to_repr()
.iter()
.flat_map(|byte| (0..8).map(move |i| Choice::from((byte >> i) & 1u8)))
.collect::<Vec<Choice>>();
bits
}
// Synthesize a bit representation into circuit gadgets.
fn synthesize_bits<CS: ConstraintSystem<F>>(
cs: &mut CS,
bits: &[Choice],
) -> Result<Vec<AllocatedBit>, SynthesisError> {
let alloc_bits: Vec<AllocatedBit> = bits
.iter()
.enumerate()
.map(|(i, bit)| {
AllocatedBit::alloc(
cs.namespace(|| format!("bit {}", i)),
Some(bit.unwrap_u8() == 1u8),
)
})
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
.unwrap();
Ok(alloc_bits)
}
}
impl<F> StepCircuit<F> for EcdsaCircuit<F>
where
F: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
{
// Prove knowledge of the sk used to generate the Ecdsa signature (R,s)
// with public key PK and message commitment c.
// [s]G == R + [c]PK
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
let z_rx = AllocatedNum::alloc(cs.namespace(|| "z_rx"), || Ok(self.z_r.x))?;
let z_ry = AllocatedNum::alloc(cs.namespace(|| "z_ry"), || Ok(self.z_r.y))?;
let z_gx = AllocatedNum::alloc(cs.namespace(|| "z_gx"), || Ok(self.z_g.x))?;
let z_gy = AllocatedNum::alloc(cs.namespace(|| "z_gy"), || Ok(self.z_g.y))?;
let z_pkx = AllocatedNum::alloc(cs.namespace(|| "z_pkx"), || Ok(self.z_pk.x))?;
let z_pky = AllocatedNum::alloc(cs.namespace(|| "z_pky"), || Ok(self.z_pk.y))?;
let z_c = AllocatedNum::alloc(cs.namespace(|| "z_c"), || Ok(self.z_c))?;
let z_s = AllocatedNum::alloc(cs.namespace(|| "z_s"), || Ok(self.z_s))?;
let z_hash = poseidon_hash(
cs.namespace(|| "input hash"),
vec![z_rx, z_ry, z_gx, z_gy, z_pkx, z_pky, z_c, z_s],
&self.pc,
)?;
cs.enforce(
|| "z == z1",
|lc| lc + z.get_variable(),
|lc| lc + CS::one(),
|lc| lc + z_hash.get_variable(),
);
let g = AllocatedPoint::alloc(
cs.namespace(|| "G"),
Some((self.g.x, self.g.y, self.g.is_infinity)),
)?;
let s_bits = Self::synthesize_bits(&mut cs.namespace(|| "s_bits"), &self.s_bits)?;
let sg = g.scalar_mul(cs.namespace(|| "[s]G"), s_bits)?;
let r = AllocatedPoint::alloc(
cs.namespace(|| "R"),
Some((self.r.x, self.r.y, self.r.is_infinity)),
)?;
let c_bits = Self::synthesize_bits(&mut cs.namespace(|| "c_bits"), &self.c_bits)?;
let pk = AllocatedPoint::alloc(
cs.namespace(|| "PK"),
Some((self.pk.x, self.pk.y, self.pk.is_infinity)),
)?;
let cpk = pk.scalar_mul(&mut cs.namespace(|| "[c]PK"), c_bits)?;
let rcpk = cpk.add(&mut cs.namespace(|| "R + [c]PK"), &r)?;
let (rcpk_x, rcpk_y, _) = rcpk.get_coordinates();
let (sg_x, sg_y, _) = sg.get_coordinates();
cs.enforce(
|| "sg_x == rcpk_x",
|lc| lc + sg_x.get_variable(),
|lc| lc + CS::one(),
|lc| lc + rcpk_x.get_variable(),
);
cs.enforce(
|| "sg_y == rcpk_y",
|lc| lc + sg_y.get_variable(),
|lc| lc + CS::one(),
|lc| lc + rcpk_y.get_variable(),
);
let rx = AllocatedNum::alloc(cs.namespace(|| "rx"), || Ok(self.r.x))?;
let ry = AllocatedNum::alloc(cs.namespace(|| "ry"), || Ok(self.r.y))?;
let gx = AllocatedNum::alloc(cs.namespace(|| "gx"), || Ok(self.g.x))?;
let gy = AllocatedNum::alloc(cs.namespace(|| "gy"), || Ok(self.g.y))?;
let pkx = AllocatedNum::alloc(cs.namespace(|| "pkx"), || Ok(self.pk.x))?;
let pky = AllocatedNum::alloc(cs.namespace(|| "pky"), || Ok(self.pk.y))?;
let c = AllocatedNum::alloc(cs.namespace(|| "c"), || Ok(self.c))?;
let s = AllocatedNum::alloc(cs.namespace(|| "s"), || Ok(self.s))?;
poseidon_hash(
cs.namespace(|| "output hash"),
vec![rx, ry, gx, gy, pkx, pky, c, s],
&self.pc,
)
}
fn compute(&self, z: &F) -> F {
let z_hash = Poseidon::<F, U8>::new_with_preimage(
&[
self.z_r.x,
self.z_r.y,
self.z_g.x,
self.z_g.y,
self.z_pk.x,
self.z_pk.y,
self.z_c,
self.z_s,
],
&self.pc,
)
.hash();
debug_assert_eq!(z, &z_hash);
Poseidon::<F, U8>::new_with_preimage(
&[
self.r.x, self.r.y, self.g.x, self.g.y, self.pk.x, self.pk.y, self.c, self.s,
],
&self.pc,
)
.hash()
}
}
|