Browse Source

Remove Zlib compression in public parameter computation (#182)

* test: add test for pp computation

* bench: add a digest computation bench

* refactor: Optimize digest computation and update tests

- Remove flate2 dependency from codebase
- Replace ZlibEncoder with bincode::serialize in compute_digest function
- Update test_pp_digest expected results to align with compute_digest changes

Bench results:
```
compute_digest          time:   [1.4451 s 1.4571 s 1.4689 s]
                        change: [-29.357% -27.854% -26.573%] (p = 0.00 < 0.05)
                        Performance has improved.
```
main
François Garillot 1 year ago
committed by GitHub
parent
commit
031738de51
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 130 additions and 6 deletions
  1. +4
    -0
      Cargo.toml
  2. +84
    -0
      benches/compute-digest.rs
  3. +42
    -6
      src/lib.rs

+ 4
- 0
Cargo.toml

@ -49,6 +49,10 @@ harness = false
name = "compressed-snark" name = "compressed-snark"
harness = false harness = false
[[bench]]
name = "compute-digest"
harness = false
[features] [features]
default = [] default = []
# Compiles in portable mode, w/o ISA extensions => binary can be executed on all systems. # Compiles in portable mode, w/o ISA extensions => binary can be executed on all systems.

+ 84
- 0
benches/compute-digest.rs

@ -0,0 +1,84 @@
use std::{marker::PhantomData, time::Duration};
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use criterion::{black_box, criterion_group, criterion_main, Criterion};
use ff::PrimeField;
use nova_snark::{
traits::{
circuit::{StepCircuit, TrivialTestCircuit},
Group,
},
PublicParams,
};
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
type C1 = NonTrivialTestCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
criterion_group! {
name = compute_digest;
config = Criterion::default().warm_up_time(Duration::from_millis(3000)).sample_size(10);
targets = bench_compute_digest
}
criterion_main!(compute_digest);
fn bench_compute_digest(c: &mut Criterion) {
c.bench_function("compute_digest", |b| {
b.iter(|| {
PublicParams::<G1, G2, C1, C2>::setup(black_box(C1::new(10)), black_box(C2::default()))
})
});
}
#[derive(Clone, Debug, Default)]
struct NonTrivialTestCircuit<F: PrimeField> {
num_cons: usize,
_p: PhantomData<F>,
}
impl<F> NonTrivialTestCircuit<F>
where
F: PrimeField,
{
pub fn new(num_cons: usize) -> Self {
Self {
num_cons,
_p: Default::default(),
}
}
}
impl<F> StepCircuit<F> for NonTrivialTestCircuit<F>
where
F: PrimeField,
{
fn arity(&self) -> usize {
1
}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: &[AllocatedNum<F>],
) -> Result<Vec<AllocatedNum<F>>, SynthesisError> {
// Consider a an equation: `x^2 = y`, where `x` and `y` are respectively the input and output.
let mut x = z[0].clone();
let mut y = x.clone();
for i in 0..self.num_cons {
y = x.square(cs.namespace(|| format!("x_sq_{i}")))?;
x = y.clone();
}
Ok(vec![y])
}
fn output(&self, z: &[F]) -> Vec<F> {
let mut x = z[0];
let mut y = x;
for _i in 0..self.num_cons {
y = x * x;
x = y;
}
vec![y]
}
}

+ 42
- 6
src/lib.rs

@ -36,7 +36,6 @@ use constants::{BN_LIMB_WIDTH, BN_N_LIMBS, NUM_FE_WITHOUT_IO_FOR_CRHF, NUM_HASH_
use core::marker::PhantomData; use core::marker::PhantomData;
use errors::NovaError; use errors::NovaError;
use ff::Field; use ff::Field;
use flate2::{write::ZlibEncoder, Compression};
use gadgets::utils::scalar_as_base; use gadgets::utils::scalar_as_base;
use nifs::NIFS; use nifs::NIFS;
use r1cs::{R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness}; use r1cs::{R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness};
@ -757,13 +756,10 @@ type CE = ::CE;
fn compute_digest<G: Group, T: Serialize>(o: &T) -> G::Scalar { fn compute_digest<G: Group, T: Serialize>(o: &T) -> G::Scalar {
// obtain a vector of bytes representing public parameters // obtain a vector of bytes representing public parameters
let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default());
bincode::serialize_into(&mut encoder, o).unwrap();
let pp_bytes = encoder.finish().unwrap();
let bytes = bincode::serialize(o).unwrap();
// convert pp_bytes into a short digest // convert pp_bytes into a short digest
let mut hasher = Sha3_256::new(); let mut hasher = Sha3_256::new();
hasher.input(&pp_bytes);
hasher.input(&bytes);
let digest = hasher.result(); let digest = hasher.result();
// truncate the digest to NUM_HASH_BITS bits // truncate the digest to NUM_HASH_BITS bits
@ -851,6 +847,46 @@ mod tests {
} }
} }
fn test_pp_digest_with<G1, G2, T1, T2>(circuit1: T1, circuit2: T2, expected: &str)
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
T1: StepCircuit<G1::Scalar>,
T2: StepCircuit<G2::Scalar>,
{
let pp = PublicParams::<G1, G2, T1, T2>::setup(circuit1, circuit2);
let digest_str = pp
.digest
.to_repr()
.as_ref()
.iter()
.map(|b| format!("{:02x}", b))
.collect::<String>();
assert_eq!(digest_str, expected);
}
#[test]
fn test_pp_digest() {
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
let trivial_circuit1 = TrivialTestCircuit::<<G1 as Group>::Scalar>::default();
let trivial_circuit2 = TrivialTestCircuit::<<G2 as Group>::Scalar>::default();
let cubic_circuit1 = CubicCircuit::<<G1 as Group>::Scalar>::default();
test_pp_digest_with::<G1, G2, _, _>(
trivial_circuit1,
trivial_circuit2.clone(),
"39a4ea9dd384346fdeb6b5857c7be56fa035153b616d55311f3191dfbceea603",
);
test_pp_digest_with::<G1, G2, _, _>(
cubic_circuit1,
trivial_circuit2,
"3f7b25f589f2da5ab26254beba98faa54f6442ebf5fa5860caf7b08b576cab00",
);
}
fn test_ivc_trivial_with<G1, G2>() fn test_ivc_trivial_with<G1, G2>()
where where
G1: Group<Base = <G2 as Group>::Scalar>, G1: Group<Base = <G2 as Group>::Scalar>,

Loading…
Cancel
Save