Recursion APIs (#62)

* recursion APIs (WIP)

* PublicParams struct and associated new

* fix build

* draft of APIs

* start with tests

* add a test case for the base case of recursion
This commit is contained in:
Srinath Setty
2022-05-15 12:05:18 +05:30
committed by GitHub
parent e8a6e45b3c
commit 07b3c4289b
4 changed files with 314 additions and 29 deletions

View File

@@ -15,9 +15,237 @@ mod poseidon;
pub mod r1cs;
pub mod traits;
use crate::bellperson::{
r1cs::{NovaShape, NovaWitness},
shape_cs::ShapeCS,
solver::SatisfyingAssignment,
};
use crate::poseidon::ROConstantsCircuit; // TODO: make this a trait so we can use it without the concrete implementation
use ::bellperson::{Circuit, ConstraintSystem};
use circuit::{NIFSVerifierCircuit, NIFSVerifierCircuitInputs, NIFSVerifierCircuitParams};
use constants::{BN_LIMB_WIDTH, BN_N_LIMBS};
use core::marker::PhantomData;
use errors::NovaError;
use r1cs::{R1CSGens, R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness};
use traits::Group;
use ff::Field;
use r1cs::{
R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness,
};
use traits::{Group, HashFuncConstantsTrait, HashFuncTrait, StepCircuit};
type ROConstants<G> =
<<G as Group>::HashFunc as HashFuncTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants;
/// A type that holds public parameters of Nova
pub struct PublicParams<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G2::Base> + Clone,
C2: StepCircuit<G1::Base> + Clone,
{
_ro_consts_primary: ROConstants<G1>,
ro_consts_circuit_primary: ROConstantsCircuit<<G2 as Group>::Base>,
r1cs_gens_primary: R1CSGens<G1>,
r1cs_shape_primary: R1CSShape<G1>,
_ro_consts_secondary: ROConstants<G2>,
ro_consts_circuit_secondary: ROConstantsCircuit<<G1 as Group>::Base>,
r1cs_gens_secondary: R1CSGens<G2>,
r1cs_shape_secondary: R1CSShape<G2>,
c_primary: C1,
c_secondary: C2,
params_primary: NIFSVerifierCircuitParams,
params_secondary: NIFSVerifierCircuitParams,
}
impl<G1, G2, C1, C2> PublicParams<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G2::Base> + Clone,
C2: StepCircuit<G1::Base> + Clone,
{
/// Create a new `PublicParams`
pub fn setup(c_primary: C1, c_secondary: C2) -> Self {
let params_primary = NIFSVerifierCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
let params_secondary = NIFSVerifierCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
let _ro_consts_primary: ROConstants<G1> = ROConstants::<G1>::new();
let _ro_consts_secondary: ROConstants<G2> = ROConstants::<G2>::new();
let ro_consts_circuit_primary: ROConstantsCircuit<<G2 as Group>::Base> =
ROConstantsCircuit::new();
let ro_consts_circuit_secondary: ROConstantsCircuit<<G1 as Group>::Base> =
ROConstantsCircuit::new();
// Initialize gens for the primary
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
params_primary.clone(),
None,
c_primary.clone(),
ro_consts_circuit_primary.clone(),
);
let mut cs: ShapeCS<G1> = ShapeCS::new();
let _ = circuit_primary.synthesize(&mut cs);
let (r1cs_shape_primary, r1cs_gens_primary) = (cs.r1cs_shape(), cs.r1cs_gens());
// Initialize gens for the secondary
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
params_secondary.clone(),
None,
c_secondary.clone(),
ro_consts_circuit_secondary.clone(),
);
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = circuit_secondary.synthesize(&mut cs);
let (r1cs_shape_secondary, r1cs_gens_secondary) = (cs.r1cs_shape(), cs.r1cs_gens());
Self {
_ro_consts_primary,
ro_consts_circuit_primary,
r1cs_gens_primary,
r1cs_shape_primary,
_ro_consts_secondary,
ro_consts_circuit_secondary,
r1cs_gens_secondary,
r1cs_shape_secondary,
c_primary,
c_secondary,
params_primary,
params_secondary,
}
}
}
/// A SNARK that proves the correct execution of an incremental computation
pub struct RecursiveSNARK<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G2::Base> + Clone,
C2: StepCircuit<G1::Base> + Clone,
{
r_W_primary: RelaxedR1CSWitness<G1>,
r_U_primary: RelaxedR1CSInstance<G1>,
l_w_primary: R1CSWitness<G1>,
l_u_primary: R1CSInstance<G1>,
r_W_secondary: RelaxedR1CSWitness<G2>,
r_U_secondary: RelaxedR1CSInstance<G2>,
l_w_secondary: R1CSWitness<G2>,
l_u_secondary: R1CSInstance<G2>,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
impl<G1, G2, C1, C2> RecursiveSNARK<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G2::Base> + Clone,
C2: StepCircuit<G1::Base> + Clone,
{
/// Create a new `RecursiveSNARK`
pub fn prove(
pp: &PublicParams<G1, G2, C1, C2>,
z0_primary: G1::Scalar,
z0_secondary: G2::Scalar,
) -> Result<Self, NovaError> {
// Execute the base case for the primary
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NIFSVerifierCircuitInputs<G2> = NIFSVerifierCircuitInputs::new(
pp.r1cs_shape_secondary.get_digest(),
<G2 as Group>::Base::zero(),
z0_primary,
None,
None,
None,
None,
);
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
pp.params_primary.clone(),
Some(inputs_primary),
pp.c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
let (u_primary, w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
.map_err(|_e| NovaError::UnSat)?;
// check if the base case is satisfied
pp.r1cs_shape_primary
.is_sat(&pp.r1cs_gens_primary, &u_primary, &w_primary)
.map_err(|_e| NovaError::UnSat)?;
// Execute the base case for the secondary
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
pp.r1cs_shape_primary.get_digest(),
<G1 as Group>::Base::zero(),
z0_secondary,
None,
None,
Some(u_primary.clone()),
None,
);
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
pp.params_secondary.clone(),
Some(inputs_secondary),
pp.c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
let (u_secondary, w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
.map_err(|_e| NovaError::UnSat)?;
// check if the base case is satisfied
pp.r1cs_shape_secondary
.is_sat(&pp.r1cs_gens_secondary, &u_secondary, &w_secondary)
.map_err(|_e| NovaError::UnSat)?;
Ok(Self {
r_W_primary: RelaxedR1CSWitness::<G1>::default(&pp.r1cs_shape_primary),
r_U_primary: RelaxedR1CSInstance::<G1>::default(
&pp.r1cs_gens_primary,
&pp.r1cs_shape_primary,
),
l_w_primary: w_primary,
l_u_primary: u_primary,
r_W_secondary: RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary),
r_U_secondary: RelaxedR1CSInstance::<G2>::default(
&pp.r1cs_gens_secondary,
&pp.r1cs_shape_secondary,
),
l_w_secondary: w_secondary,
l_u_secondary: u_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
})
}
/// Verify the correctness of the `RecursiveSNARK`
pub fn verify(&self, pp: &PublicParams<G1, G2, C1, C2>) -> Result<(), NovaError> {
pp.r1cs_shape_primary.is_sat_relaxed(
&pp.r1cs_gens_primary,
&self.r_U_primary,
&self.r_W_primary,
)?;
pp.r1cs_shape_primary
.is_sat(&pp.r1cs_gens_primary, &self.l_u_primary, &self.l_w_primary)?;
pp.r1cs_shape_secondary.is_sat_relaxed(
&pp.r1cs_gens_secondary,
&self.r_U_secondary,
&self.r_W_secondary,
)?;
pp.r1cs_shape_secondary.is_sat(
&pp.r1cs_gens_secondary,
&self.l_u_secondary,
&self.l_w_secondary,
)?;
Ok(())
}
}
/// A SNARK that proves the knowledge of a valid `RecursiveSNARK`
pub struct CompressedSNARKTrivial<G: Group> {
@@ -41,3 +269,62 @@ impl<G: Group> CompressedSNARKTrivial<G> {
S.is_sat_relaxed(gens, U, &self.W)
}
}
#[cfg(test)]
mod tests {
use super::*;
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use ff::PrimeField;
use std::marker::PhantomData;
#[derive(Clone, Debug)]
struct TestCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for TestCircuit<F>
where
F: PrimeField,
{
fn synthesize<CS: ConstraintSystem<F>>(
&self,
_cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
Ok(z)
}
}
#[test]
fn test_base_case() {
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TestCircuit<<G2 as Group>::Base>,
TestCircuit<<G1 as Group>::Base>,
>::setup(
TestCircuit {
_p: Default::default(),
},
TestCircuit {
_p: Default::default(),
},
);
// produce a recursive SNARK
let res = RecursiveSNARK::prove(
&pp,
<G2 as Group>::Base::zero(),
<G1 as Group>::Base::zero(),
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(&pp);
assert!(res.is_ok());
}
}