diff --git a/benches/compressed-snark.rs b/benches/compressed-snark.rs index bb600fd..6b2a20a 100644 --- a/benches/compressed-snark.rs +++ b/benches/compressed-snark.rs @@ -1,8 +1,5 @@ #![allow(non_snake_case)] -extern crate flate2; - -//use flate2::{write::ZlibEncoder, Compression}; use nova_snark::{ traits::{Group, StepCircuit}, CompressedSNARK, PublicParams, RecursiveSNARK, @@ -10,6 +7,8 @@ use nova_snark::{ type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; +type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK; +type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK; use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError}; use core::marker::PhantomData; @@ -65,22 +64,17 @@ fn bench_compressed_snark(c: &mut Criterion, num_samples: usize, num_steps: usiz // Bench time to produce a compressed SNARK group.bench_function("Prove", |b| { b.iter(|| { - assert!(CompressedSNARK::prove(black_box(&pp), black_box(&recursive_snark)).is_ok()); + assert!(CompressedSNARK::<_, _, _, _, S1, S2>::prove( + black_box(&pp), + black_box(&recursive_snark) + ) + .is_ok()); }) }); - let res = CompressedSNARK::prove(&pp, &recursive_snark); + let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark); assert!(res.is_ok()); let compressed_snark = res.unwrap(); - // Output the proof size - //let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default()); - //bincode::serialize_into(&mut encoder, &compressed_snark).unwrap(); - //let proof_encoded = encoder.finish().unwrap(); - //println!( - // "ProofSize: {} B", - // proof_encoded.len(), - //); - // Benchmark the verification time let name = "Verify"; group.bench_function(name, |b| { diff --git a/benches/recursive-snark.rs b/benches/recursive-snark.rs index dcda2bf..f91e3cd 100644 --- a/benches/recursive-snark.rs +++ b/benches/recursive-snark.rs @@ -1,8 +1,5 @@ #![allow(non_snake_case)] -extern crate flate2; - -//use flate2::{write::ZlibEncoder, Compression}; use nova_snark::{ traits::{Group, StepCircuit}, PublicParams, RecursiveSNARK, @@ -75,7 +72,6 @@ fn bench_recursive_snark(c: &mut Criterion, num_samples: usize, num_steps: usize assert!(res.is_ok()); let recursive_snark = res.unwrap(); - // TODO: Output the proof size // Benchmark the verification time let name = "Verify"; group.bench_function(name, |b| { diff --git a/src/circuit.rs b/src/circuit.rs index 95d45a9..cd9569f 100644 --- a/src/circuit.rs +++ b/src/circuit.rs @@ -1,7 +1,6 @@ //! There are two Verification Circuits. The primary and the secondary. //! Each of them is over a Pasta curve but //! only the primary executes the next step of the computation. -//! TODO: The base case is different for the primary and the secondary. //! We have two running instances. Each circuit takes as input 2 hashes: one for each //! of the running instances. Each of these hashes is //! H(params = H(shape, gens), i, z0, zi, U). Each circuit folds the last invocation of @@ -267,7 +266,7 @@ where // Compute variable indicating if this is the base case let zero = alloc_zero(cs.namespace(|| "zero"))?; - let is_base_case = alloc_num_equals(cs.namespace(|| "Check if base case"), &i.clone(), &zero)?; //TODO: maybe optimize this? + let is_base_case = alloc_num_equals(cs.namespace(|| "Check if base case"), &i.clone(), &zero)?; // Synthesize the circuit for the base case and get the new running instance let Unew_base = self.synthesize_base_case(cs.namespace(|| "base case"), u.clone())?; @@ -362,6 +361,7 @@ mod tests { use ff::PrimeField; use std::marker::PhantomData; + #[derive(Clone)] struct TestCircuit { _p: PhantomData, } @@ -430,15 +430,8 @@ mod tests { // Execute the base case for the primary let zero1 = <::Base as Field>::zero(); let mut cs1: SatisfyingAssignment = SatisfyingAssignment::new(); - let inputs1: NIFSVerifierCircuitInputs = NIFSVerifierCircuitInputs::new( - shape2.get_digest(), - zero1, - zero1, // TODO: Provide real input for z0 - None, - None, - None, - None, - ); + let inputs1: NIFSVerifierCircuitInputs = + NIFSVerifierCircuitInputs::new(shape2.get_digest(), zero1, zero1, None, None, None, None); let circuit1: NIFSVerifierCircuit::Base>> = NIFSVerifierCircuit::new( params1, diff --git a/src/commitments.rs b/src/commitments.rs index 3574803..e97c082 100644 --- a/src/commitments.rs +++ b/src/commitments.rs @@ -9,8 +9,9 @@ use core::{ }; use ff::Field; use merlin::Transcript; +use rayon::prelude::*; -#[derive(Debug)] +#[derive(Clone, Debug)] pub struct CommitGens { gens: Vec, _p: PhantomData, @@ -28,13 +29,101 @@ pub struct CompressedCommitment { impl CommitGens { pub fn new(label: &'static [u8], n: usize) -> Self { - let gens = G::from_label(label, n); + CommitGens { + gens: G::from_label(label, n.next_power_of_two()), + _p: Default::default(), + } + } + + fn len(&self) -> usize { + self.gens.len() + } + + pub fn split_at(&self, n: usize) -> (CommitGens, CommitGens) { + ( + CommitGens { + gens: self.gens[0..n].to_vec(), + _p: Default::default(), + }, + CommitGens { + gens: self.gens[n..].to_vec(), + _p: Default::default(), + }, + ) + } + pub fn combine(&self, other: &CommitGens) -> CommitGens { + let gens = { + let mut c = self.gens.clone(); + c.extend(other.gens.clone()); + c + }; CommitGens { gens, - _p: PhantomData::default(), + _p: Default::default(), } } + + // combines the left and right halves of `self` using `w1` and `w2` as the weights + pub fn fold(&self, w1: &G::Scalar, w2: &G::Scalar) -> CommitGens { + let w = vec![*w1, *w2]; + let (L, R) = self.split_at(self.len() / 2); + + let gens = (0..self.len() / 2) + .into_par_iter() + .map(|i| { + let gens = CommitGens:: { + gens: [L.gens[i].clone(), R.gens[i].clone()].to_vec(), + _p: Default::default(), + }; + w.commit(&gens).comm.preprocessed() + }) + .collect(); + + CommitGens { + gens, + _p: Default::default(), + } + } + + /// Scales each element in `self` by `r` + pub fn scale(&self, r: &G::Scalar) -> Self { + let gens_scaled = self + .gens + .clone() + .into_par_iter() + .map(|g| { + let gens = CommitGens:: { + gens: vec![g], + _p: Default::default(), + }; + [*r].commit(&gens).comm.preprocessed() + }) + .collect(); + + CommitGens { + gens: gens_scaled, + _p: Default::default(), + } + } + + /// reinterprets a vector of commitments as a set of generators + pub fn reinterpret_commitments_as_gens( + c: &[CompressedCommitment], + ) -> Result { + let d = (0..c.len()) + .into_par_iter() + .map(|i| c[i].decompress()) + .collect::>, NovaError>>()?; + let gens = (0..d.len()) + .into_par_iter() + .map(|i| d[i].comm.preprocessed()) + .collect(); + Ok(CommitGens { + gens, + _p: Default::default(), + }) + } } impl Commitment { diff --git a/src/errors.rs b/src/errors.rs index ca9bf0f..efde3e5 100644 --- a/src/errors.rs +++ b/src/errors.rs @@ -20,4 +20,8 @@ pub enum NovaError { ProofVerifyError, /// returned if the provided number of steps is zero InvalidNumSteps, + /// returned when an invalid inner product argument is provided + InvalidIPA, + /// returned when an invalid sum-check proof is provided + InvalidSumcheckProof, } diff --git a/src/lib.rs b/src/lib.rs index 958fc69..cc22fdb 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -3,16 +3,21 @@ #![allow(clippy::type_complexity)] #![deny(missing_docs)] -pub mod bellperson; +// private modules mod circuit; mod commitments; mod constants; +mod nifs; +mod poseidon; +mod r1cs; + +// public modules +pub mod bellperson; pub mod errors; pub mod gadgets; -pub mod nifs; pub mod pasta; -mod poseidon; -pub mod r1cs; +pub mod snark; +pub mod spartan_with_ipa_pc; pub mod traits; use crate::bellperson::{ @@ -32,6 +37,7 @@ use poseidon::ROConstantsCircuit; // TODO: make this a trait so we can use it wi use r1cs::{ R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness, }; +use snark::RelaxedR1CSSNARKTrait; use traits::{AbsorbInROTrait, Group, HashFuncConstantsTrait, HashFuncTrait, StepCircuit}; type ROConstants = @@ -49,10 +55,12 @@ where ro_consts_circuit_primary: ROConstantsCircuit<::Base>, r1cs_gens_primary: R1CSGens, r1cs_shape_primary: R1CSShape, + r1cs_shape_padded_primary: R1CSShape, ro_consts_secondary: ROConstants, ro_consts_circuit_secondary: ROConstantsCircuit<::Base>, r1cs_gens_secondary: R1CSGens, r1cs_shape_secondary: R1CSShape, + r1cs_shape_padded_secondary: R1CSShape, c_primary: C1, c_secondary: C2, params_primary: NIFSVerifierCircuitParams, @@ -89,6 +97,7 @@ where let mut cs: ShapeCS = ShapeCS::new(); let _ = circuit_primary.synthesize(&mut cs); let (r1cs_shape_primary, r1cs_gens_primary) = (cs.r1cs_shape(), cs.r1cs_gens()); + let r1cs_shape_padded_primary = r1cs_shape_primary.pad(); // Initialize gens for the secondary let circuit_secondary: NIFSVerifierCircuit = NIFSVerifierCircuit::new( @@ -100,16 +109,19 @@ where let mut cs: ShapeCS = ShapeCS::new(); let _ = circuit_secondary.synthesize(&mut cs); let (r1cs_shape_secondary, r1cs_gens_secondary) = (cs.r1cs_shape(), cs.r1cs_gens()); + let r1cs_shape_padded_secondary = r1cs_shape_secondary.pad(); Self { ro_consts_primary, ro_consts_circuit_primary, r1cs_gens_primary, r1cs_shape_primary, + r1cs_shape_padded_primary, ro_consts_secondary, ro_consts_circuit_secondary, r1cs_gens_secondary, r1cs_shape_secondary, + r1cs_shape_padded_secondary, c_primary, c_secondary, params_primary, @@ -366,50 +378,74 @@ where } // check the satisfiability of the provided instances - pp.r1cs_shape_primary.is_sat_relaxed( - &pp.r1cs_gens_primary, - &self.r_U_primary, - &self.r_W_primary, - )?; - - pp.r1cs_shape_primary - .is_sat(&pp.r1cs_gens_primary, &self.l_u_primary, &self.l_w_primary)?; - - pp.r1cs_shape_secondary.is_sat_relaxed( - &pp.r1cs_gens_secondary, - &self.r_U_secondary, - &self.r_W_secondary, - )?; + let ((res_r_primary, res_l_primary), (res_r_secondary, res_l_secondary)) = rayon::join( + || { + rayon::join( + || { + pp.r1cs_shape_primary.is_sat_relaxed( + &pp.r1cs_gens_primary, + &self.r_U_primary, + &self.r_W_primary, + ) + }, + || { + pp.r1cs_shape_primary.is_sat( + &pp.r1cs_gens_primary, + &self.l_u_primary, + &self.l_w_primary, + ) + }, + ) + }, + || { + rayon::join( + || { + pp.r1cs_shape_secondary.is_sat_relaxed( + &pp.r1cs_gens_secondary, + &self.r_U_secondary, + &self.r_W_secondary, + ) + }, + || { + pp.r1cs_shape_secondary.is_sat( + &pp.r1cs_gens_secondary, + &self.l_u_secondary, + &self.l_w_secondary, + ) + }, + ) + }, + ); - pp.r1cs_shape_secondary.is_sat( - &pp.r1cs_gens_secondary, - &self.l_u_secondary, - &self.l_w_secondary, - )?; + // check the returned res objects + res_r_primary?; + res_l_primary?; + res_r_secondary?; + res_l_secondary?; Ok((self.zn_primary, self.zn_secondary)) } } /// A SNARK that proves the knowledge of a valid `RecursiveSNARK` -/// For now, it implements a constant factor compression. -/// In the future, we will implement an exponential reduction in proof sizes -pub struct CompressedSNARK +pub struct CompressedSNARK where G1: Group::Scalar>, G2: Group::Scalar>, - C1: StepCircuit + Clone, - C2: StepCircuit + Clone, + C1: StepCircuit, + C2: StepCircuit, + S1: RelaxedR1CSSNARKTrait, + S2: RelaxedR1CSSNARKTrait, { r_U_primary: RelaxedR1CSInstance, l_u_primary: R1CSInstance, nifs_primary: NIFS, - f_W_primary: RelaxedR1CSWitness, + f_W_snark_primary: S1, r_U_secondary: RelaxedR1CSInstance, l_u_secondary: R1CSInstance, nifs_secondary: NIFS, - f_W_secondary: RelaxedR1CSWitness, + f_W_snark_secondary: S2, zn_primary: G1::Scalar, zn_secondary: G2::Scalar, @@ -418,50 +454,84 @@ where _p_c2: PhantomData, } -impl CompressedSNARK +impl CompressedSNARK where G1: Group::Scalar>, G2: Group::Scalar>, - C1: StepCircuit + Clone, - C2: StepCircuit + Clone, + C1: StepCircuit, + C2: StepCircuit, + S1: RelaxedR1CSSNARKTrait, + S2: RelaxedR1CSSNARKTrait, { /// Create a new `CompressedSNARK` pub fn prove( pp: &PublicParams, recursive_snark: &RecursiveSNARK, ) -> Result { - // fold the primary circuit's instance - let (nifs_primary, (_f_U_primary, f_W_primary)) = NIFS::prove( - &pp.r1cs_gens_primary, - &pp.ro_consts_primary, - &pp.r1cs_shape_primary, - &recursive_snark.r_U_primary, - &recursive_snark.r_W_primary, - &recursive_snark.l_u_primary, - &recursive_snark.l_w_primary, - )?; + let (res_primary, res_secondary) = rayon::join( + // fold the primary circuit's instance + || { + NIFS::prove( + &pp.r1cs_gens_primary, + &pp.ro_consts_primary, + &pp.r1cs_shape_primary, + &recursive_snark.r_U_primary, + &recursive_snark.r_W_primary, + &recursive_snark.l_u_primary, + &recursive_snark.l_w_primary, + ) + }, + || { + // fold the secondary circuit's instance + NIFS::prove( + &pp.r1cs_gens_secondary, + &pp.ro_consts_secondary, + &pp.r1cs_shape_secondary, + &recursive_snark.r_U_secondary, + &recursive_snark.r_W_secondary, + &recursive_snark.l_u_secondary, + &recursive_snark.l_w_secondary, + ) + }, + ); - // fold the secondary circuit's instance - let (nifs_secondary, (_f_U_secondary, f_W_secondary)) = NIFS::prove( - &pp.r1cs_gens_secondary, - &pp.ro_consts_secondary, - &pp.r1cs_shape_secondary, - &recursive_snark.r_U_secondary, - &recursive_snark.r_W_secondary, - &recursive_snark.l_u_secondary, - &recursive_snark.l_w_secondary, - )?; + let (nifs_primary, (f_U_primary, f_W_primary)) = res_primary?; + let (nifs_secondary, (f_U_secondary, f_W_secondary)) = res_secondary?; + + // produce a prover key for the SNARK + let (pk_primary, pk_secondary) = rayon::join( + || S1::prover_key(&pp.r1cs_gens_primary, &pp.r1cs_shape_padded_primary), + || S2::prover_key(&pp.r1cs_gens_secondary, &pp.r1cs_shape_padded_secondary), + ); + + // create SNARKs proving the knowledge of f_W_primary and f_W_secondary + let (f_W_snark_primary, f_W_snark_secondary) = rayon::join( + || { + S1::prove( + &pk_primary, + &f_U_primary, + &f_W_primary.pad(&pp.r1cs_shape_padded_primary), // pad the witness since shape was padded + ) + }, + || { + S2::prove( + &pk_secondary, + &f_U_secondary, + &f_W_secondary.pad(&pp.r1cs_shape_padded_secondary), // pad the witness since the shape was padded + ) + }, + ); Ok(Self { r_U_primary: recursive_snark.r_U_primary.clone(), l_u_primary: recursive_snark.l_u_primary.clone(), nifs_primary, - f_W_primary, + f_W_snark_primary: f_W_snark_primary?, r_U_secondary: recursive_snark.r_U_secondary.clone(), l_u_secondary: recursive_snark.l_u_secondary.clone(), nifs_secondary, - f_W_secondary, + f_W_snark_secondary: f_W_snark_secondary?, zn_primary: recursive_snark.zn_primary, zn_secondary: recursive_snark.zn_secondary, @@ -532,15 +602,24 @@ where &self.l_u_secondary, )?; - // check the satisfiability of the folded instances using the purported folded witnesses - pp.r1cs_shape_primary - .is_sat_relaxed(&pp.r1cs_gens_primary, &f_U_primary, &self.f_W_primary)?; + // produce a verifier key for the SNARK + let (vk_primary, vk_secondary) = rayon::join( + || S1::verifier_key(&pp.r1cs_gens_primary, &pp.r1cs_shape_padded_primary), + || S2::verifier_key(&pp.r1cs_gens_secondary, &pp.r1cs_shape_padded_secondary), + ); - pp.r1cs_shape_secondary.is_sat_relaxed( - &pp.r1cs_gens_secondary, - &f_U_secondary, - &self.f_W_secondary, - )?; + // check the satisfiability of the folded instances using SNARKs proving the knowledge of their satisfying witnesses + let (res_primary, res_secondary) = rayon::join( + || self.f_W_snark_primary.verify(&vk_primary, &f_U_primary), + || { + self + .f_W_snark_secondary + .verify(&vk_secondary, &f_U_secondary) + }, + ); + + res_primary?; + res_secondary?; Ok((self.zn_primary, self.zn_secondary)) } @@ -551,6 +630,8 @@ mod tests { use super::*; type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; + type S1 = spartan_with_ipa_pc::RelaxedR1CSSNARK; + type S2 = spartan_with_ipa_pc::RelaxedR1CSSNARK; use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError}; use ff::PrimeField; use std::marker::PhantomData; @@ -710,9 +791,62 @@ mod tests { } assert_eq!(zn_secondary, zn_secondary_direct); assert_eq!(zn_secondary, ::Scalar::from(2460515u64)); + } + + #[test] + fn test_ivc_nontrivial_with_compression() { + // produce public parameters + let pp = PublicParams::< + G1, + G2, + TrivialTestCircuit<::Scalar>, + CubicCircuit<::Scalar>, + >::setup( + TrivialTestCircuit { + _p: Default::default(), + }, + CubicCircuit { + _p: Default::default(), + }, + ); + + let num_steps = 3; + + // produce a recursive SNARK + let res = RecursiveSNARK::prove( + &pp, + num_steps, + ::Scalar::one(), + ::Scalar::zero(), + ); + assert!(res.is_ok()); + let recursive_snark = res.unwrap(); + + // verify the recursive SNARK + let res = recursive_snark.verify( + &pp, + num_steps, + ::Scalar::one(), + ::Scalar::zero(), + ); + assert!(res.is_ok()); + + let (zn_primary, zn_secondary) = res.unwrap(); + + // sanity: check the claimed output with a direct computation of the same + assert_eq!(zn_primary, ::Scalar::one()); + let mut zn_secondary_direct = ::Scalar::zero(); + for _i in 0..num_steps { + zn_secondary_direct = CubicCircuit { + _p: Default::default(), + } + .compute(&zn_secondary_direct); + } + assert_eq!(zn_secondary, zn_secondary_direct); + assert_eq!(zn_secondary, ::Scalar::from(2460515u64)); // produce a compressed SNARK - let res = CompressedSNARK::prove(&pp, &recursive_snark); + let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark); assert!(res.is_ok()); let compressed_snark = res.unwrap(); diff --git a/src/nifs.rs b/src/nifs.rs index 45cd0d2..a9ed77c 100644 --- a/src/nifs.rs +++ b/src/nifs.rs @@ -11,6 +11,7 @@ use super::traits::{AbsorbInROTrait, Group, HashFuncTrait}; use std::marker::PhantomData; /// A SNARK that holds the proof of a step of an incremental computation +#[allow(clippy::upper_case_acronyms)] pub struct NIFS { pub(crate) comm_T: CompressedCommitment, _p: PhantomData, diff --git a/src/pasta.rs b/src/pasta.rs index e4474ff..0deb040 100644 --- a/src/pasta.rs +++ b/src/pasta.rs @@ -10,14 +10,15 @@ use num_bigint::BigInt; use num_traits::Num; use pasta_curves::{ self, - arithmetic::{CurveAffine, CurveExt}, + arithmetic::{CurveAffine, CurveExt, Group as OtherGroup}, group::{Curve, GroupEncoding}, pallas, vesta, Ep, Eq, }; use rand::SeedableRng; use rand_chacha::ChaCha20Rng; +use rayon::prelude::*; use sha3::Shake256; -use std::io::Read; +use std::{io::Read, ops::Mul}; //////////////////////////////////////Pallas/////////////////////////////////////////////// @@ -45,7 +46,19 @@ impl Group for pallas::Point { scalars: &[Self::Scalar], bases: &[Self::PreprocessedGroupElement], ) -> Self { - pasta_msm::pallas(bases, scalars) + if scalars.len() >= 128 { + pasta_msm::pallas(bases, scalars) + } else { + scalars + .par_iter() + .zip(bases) + .map(|(scalar, base)| base.mul(scalar)) + .reduce(Ep::group_zero, |x, y| x + y) + } + } + + fn preprocessed(&self) -> Self::PreprocessedGroupElement { + self.to_affine() } fn compress(&self) -> Self::CompressedGroupElement { @@ -130,13 +143,25 @@ impl Group for vesta::Point { scalars: &[Self::Scalar], bases: &[Self::PreprocessedGroupElement], ) -> Self { - pasta_msm::vesta(bases, scalars) + if scalars.len() >= 128 { + pasta_msm::vesta(bases, scalars) + } else { + scalars + .par_iter() + .zip(bases) + .map(|(scalar, base)| base.mul(scalar)) + .reduce(Eq::group_zero, |x, y| x + y) + } } fn compress(&self) -> Self::CompressedGroupElement { VestaCompressedElementWrapper::new(self.to_bytes()) } + fn preprocessed(&self) -> Self::PreprocessedGroupElement { + self.to_affine() + } + fn from_label(label: &'static [u8], n: usize) -> Vec { let mut shake = Shake256::default(); shake.input(label); diff --git a/src/r1cs.rs b/src/r1cs.rs index c140e24..69d497b 100644 --- a/src/r1cs.rs +++ b/src/r1cs.rs @@ -8,6 +8,7 @@ use super::{ traits::{AbsorbInROTrait, AppendToTranscriptTrait, Group, HashFuncTrait}, }; use bellperson_nonnative::{mp::bignat::nat_to_limbs, util::convert::f_to_nat}; +use core::cmp::max; use ff::{Field, PrimeField}; use flate2::{write::ZlibEncoder, Compression}; use itertools::concat; @@ -17,20 +18,20 @@ use serde::{Deserialize, Serialize}; use sha3::{Digest, Sha3_256}; /// Public parameters for a given R1CS +#[derive(Clone)] pub struct R1CSGens { - pub(crate) gens_W: CommitGens, // TODO: avoid pub(crate) - pub(crate) gens_E: CommitGens, + pub(crate) gens: CommitGens, } /// A type that holds the shape of the R1CS matrices #[derive(Clone, Debug, PartialEq, Eq)] pub struct R1CSShape { - num_cons: usize, - num_vars: usize, - num_io: usize, - A: Vec<(usize, usize, G::Scalar)>, - B: Vec<(usize, usize, G::Scalar)>, - C: Vec<(usize, usize, G::Scalar)>, + pub(crate) num_cons: usize, + pub(crate) num_vars: usize, + pub(crate) num_io: usize, + pub(crate) A: Vec<(usize, usize, G::Scalar)>, + pub(crate) B: Vec<(usize, usize, G::Scalar)>, + pub(crate) C: Vec<(usize, usize, G::Scalar)>, digest: G::Scalar, // digest of the rest of R1CSShape } @@ -50,8 +51,8 @@ pub struct R1CSInstance { /// A type that holds a witness for a given Relaxed R1CS instance #[derive(Clone, Debug, PartialEq, Eq)] pub struct RelaxedR1CSWitness { - W: Vec, - E: Vec, + pub(crate) W: Vec, + pub(crate) E: Vec, } /// A type that holds a Relaxed R1CS instance @@ -66,13 +67,9 @@ pub struct RelaxedR1CSInstance { impl R1CSGens { /// Samples public parameters for the specified number of constraints and variables in an R1CS pub fn new(num_cons: usize, num_vars: usize) -> R1CSGens { - // generators to commit to witness vector `W` - let gens_W = CommitGens::new(b"gens_W", num_vars); - - // generators to commit to the error/slack vector `E` - let gens_E = CommitGens::new(b"gens_E", num_cons); - - R1CSGens { gens_E, gens_W } + R1CSGens { + gens: CommitGens::new(b"gens", max(num_vars, num_cons)), + } } } @@ -137,7 +134,7 @@ impl R1CSShape { Ok(shape) } - fn multiply_vec( + pub fn multiply_vec( &self, z: &[G::Scalar], ) -> Result<(Vec, Vec, Vec), NovaError> { @@ -161,9 +158,15 @@ impl R1CSShape { }) }; - let Az = sparse_matrix_vec_product(&self.A, self.num_cons, z); - let Bz = sparse_matrix_vec_product(&self.B, self.num_cons, z); - let Cz = sparse_matrix_vec_product(&self.C, self.num_cons, z); + let (Az, (Bz, Cz)) = rayon::join( + || sparse_matrix_vec_product(&self.A, self.num_cons, z), + || { + rayon::join( + || sparse_matrix_vec_product(&self.B, self.num_cons, z), + || sparse_matrix_vec_product(&self.C, self.num_cons, z), + ) + }, + ); Ok((Az, Bz, Cz)) } @@ -202,9 +205,7 @@ impl R1CSShape { // verify if comm_E and comm_W are commitments to E and W let res_comm: bool = { - let comm_W = W.W.commit(&gens.gens_W); - let comm_E = W.E.commit(&gens.gens_E); - + let (comm_W, comm_E) = rayon::join(|| W.W.commit(&gens.gens), || W.E.commit(&gens.gens)); U.comm_W == comm_W && U.comm_E == comm_E }; @@ -241,7 +242,7 @@ impl R1CSShape { }; // verify if comm_W is a commitment to W - let res_comm: bool = U.comm_W == W.W.commit(&gens.gens_W); + let res_comm: bool = U.comm_W == W.W.commit(&gens.gens); if res_eq && res_comm { Ok(()) @@ -271,15 +272,21 @@ impl R1CSShape { }; let AZ_1_circ_BZ_2 = (0..AZ_1.len()) + .into_par_iter() .map(|i| AZ_1[i] * BZ_2[i]) .collect::>(); let AZ_2_circ_BZ_1 = (0..AZ_2.len()) + .into_par_iter() .map(|i| AZ_2[i] * BZ_1[i]) .collect::>(); let u_1_cdot_CZ_2 = (0..CZ_2.len()) + .into_par_iter() .map(|i| U1.u * CZ_2[i]) .collect::>(); - let u_2_cdot_CZ_1 = (0..CZ_1.len()).map(|i| CZ_1[i]).collect::>(); + let u_2_cdot_CZ_1 = (0..CZ_1.len()) + .into_par_iter() + .map(|i| CZ_1[i]) + .collect::>(); let T = AZ_1_circ_BZ_2 .par_iter() @@ -289,7 +296,7 @@ impl R1CSShape { .map(|(((a, b), c), d)| *a + *b - *c - *d) .collect::>(); - let comm_T = T.commit(&gens.gens_E); + let comm_T = T.commit(&gens.gens); Ok((T, comm_T)) } @@ -312,15 +319,15 @@ impl R1CSShape { num_vars, num_io, A: A - .iter() + .par_iter() .map(|(i, j, v)| (*i, *j, v.to_repr().as_ref().to_vec())) .collect(), B: B - .iter() + .par_iter() .map(|(i, j, v)| (*i, *j, v.to_repr().as_ref().to_vec())) .collect(), C: C - .iter() + .par_iter() .map(|(i, j, v)| (*i, *j, v.to_repr().as_ref().to_vec())) .collect(), }; @@ -353,6 +360,78 @@ impl R1CSShape { } res } + + /// Pads the R1CSShape so that the number of variables is a power of two + /// Renumbers variables to accomodate padded variables + pub fn pad(&self) -> Self { + // check if the provided R1CSShape is already as required + if self.num_vars.next_power_of_two() == self.num_vars + && self.num_cons.next_power_of_two() == self.num_cons + { + return self.clone(); + } + + // check if the number of variables are as expected, then + // we simply set the number of constraints to the next power of two + if self.num_vars.next_power_of_two() == self.num_vars { + let digest = Self::compute_digest( + self.num_cons.next_power_of_two(), + self.num_vars, + self.num_io, + &self.A, + &self.B, + &self.C, + ); + + return R1CSShape { + num_cons: self.num_cons.next_power_of_two(), + num_vars: self.num_vars, + num_io: self.num_io, + A: self.A.clone(), + B: self.B.clone(), + C: self.C.clone(), + digest, + }; + } + + // otherwise, we need to pad the number of variables and renumber variable accesses + let num_vars_padded = self.num_vars.next_power_of_two(); + let num_cons_padded = self.num_cons.next_power_of_two(); + let apply_pad = |M: &[(usize, usize, G::Scalar)]| -> Vec<(usize, usize, G::Scalar)> { + M.par_iter() + .map(|(r, c, v)| { + if c >= &self.num_vars { + (*r, c + num_vars_padded - self.num_vars, *v) + } else { + (*r, *c, *v) + } + }) + .collect::>() + }; + + let A_padded = apply_pad(&self.A); + let B_padded = apply_pad(&self.B); + let C_padded = apply_pad(&self.C); + + let digest = Self::compute_digest( + num_cons_padded, + num_vars_padded, + self.num_io, + &A_padded, + &B_padded, + &C_padded, + ); + + R1CSShape { + num_cons: num_cons_padded, + num_vars: num_vars_padded, + num_io: self.num_io, + A: A_padded, + B: B_padded, + C: C_padded, + digest, + } + } } #[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)] @@ -391,7 +470,7 @@ impl R1CSWitness { /// Commits to the witness using the supplied generators pub fn commit(&self, gens: &R1CSGens) -> Commitment { - self.W.commit(&gens.gens_W) + self.W.commit(&gens.gens) } } @@ -448,7 +527,7 @@ impl RelaxedR1CSWitness { /// Commits to the witness using the supplied generators pub fn commit(&self, gens: &R1CSGens) -> (Commitment, Commitment) { - (self.W.commit(&gens.gens_W), self.E.commit(&gens.gens_E)) + (self.W.commit(&gens.gens), self.E.commit(&gens.gens)) } /// Folds an incoming R1CSWitness into the current one @@ -477,6 +556,23 @@ impl RelaxedR1CSWitness { .collect::>(); Ok(RelaxedR1CSWitness { W, E }) } + + /// Pads the provided witness to the correct length + pub fn pad(&self, S: &R1CSShape) -> RelaxedR1CSWitness { + let W = { + let mut W = self.W.clone(); + W.extend(vec![G::Scalar::zero(); S.num_vars - W.len()]); + W + }; + + let E = { + let mut E = self.E.clone(); + E.extend(vec![G::Scalar::zero(); S.num_cons - E.len()]); + E + }; + + Self { W, E } + } } impl RelaxedR1CSInstance { diff --git a/src/snark.rs b/src/snark.rs new file mode 100644 index 0000000..ff98280 --- /dev/null +++ b/src/snark.rs @@ -0,0 +1,47 @@ +//! A collection of traits that define the behavior of a zkSNARK for RelaxedR1CS +use super::{ + errors::NovaError, + r1cs::{R1CSGens, R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness}, + traits::Group, +}; + +/// A trait that defines the behavior of a zkSNARK's prover key +pub trait ProverKeyTrait: Send + Sync { + /// Produces a new prover's key + fn new(gens: &R1CSGens, S: &R1CSShape) -> Self; +} + +/// A trait that defines the behavior of a zkSNARK's verifier key +pub trait VerifierKeyTrait: Send + Sync { + /// Produces a new verifier's key + fn new(gens: &R1CSGens, S: &R1CSShape) -> Self; +} + +/// A trait that defines the behavior of a zkSNARK +pub trait RelaxedR1CSSNARKTrait: Sized + Send + Sync { + /// A type that represents the prover's key + type ProverKey: ProverKeyTrait; + + /// A type that represents the verifier's key + type VerifierKey: VerifierKeyTrait; + + /// Produces a prover key + fn prover_key(gens: &R1CSGens, S: &R1CSShape) -> Self::ProverKey { + Self::ProverKey::new(gens, S) + } + + /// Produces a verifier key + fn verifier_key(gens: &R1CSGens, S: &R1CSShape) -> Self::VerifierKey { + Self::VerifierKey::new(gens, S) + } + + /// Produces a new SNARK for a relaxed R1CS + fn prove( + pk: &Self::ProverKey, + U: &RelaxedR1CSInstance, + W: &RelaxedR1CSWitness, + ) -> Result; + + /// Verifies a SNARK for a relaxed R1CS + fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance) -> Result<(), NovaError>; +} diff --git a/src/spartan_with_ipa_pc/ipa.rs b/src/spartan_with_ipa_pc/ipa.rs new file mode 100644 index 0000000..0921ace --- /dev/null +++ b/src/spartan_with_ipa_pc/ipa.rs @@ -0,0 +1,399 @@ +#![allow(clippy::too_many_arguments)] +use crate::commitments::{CommitGens, CommitTrait, Commitment, CompressedCommitment}; +use crate::errors::NovaError; +use crate::traits::{AppendToTranscriptTrait, ChallengeTrait, Group}; +use core::iter; +use ff::Field; +use merlin::Transcript; +use rayon::prelude::*; +use std::marker::PhantomData; + +pub fn inner_product(a: &[T], b: &[T]) -> T +where + T: Field + Send + Sync, +{ + assert_eq!(a.len(), b.len()); + (0..a.len()) + .into_par_iter() + .map(|i| a[i] * b[i]) + .reduce(T::zero, |x, y| x + y) +} + +/// An inner product instance consists of a commitment to a vector `a` and another vector `b` +/// and the claim that c = . +pub struct InnerProductInstance { + comm_a_vec: Commitment, + b_vec: Vec, + c: G::Scalar, +} + +impl InnerProductInstance { + pub fn new(comm_a_vec: &Commitment, b_vec: &[G::Scalar], c: &G::Scalar) -> Self { + InnerProductInstance { + comm_a_vec: *comm_a_vec, + b_vec: b_vec.to_vec(), + c: *c, + } + } +} + +pub struct InnerProductWitness { + a_vec: Vec, +} + +impl InnerProductWitness { + pub fn new(a_vec: &[G::Scalar]) -> Self { + InnerProductWitness { + a_vec: a_vec.to_vec(), + } + } +} + +/// A non-interactive folding scheme (NIFS) for inner product relations +pub struct NIFSForInnerProduct { + cross_term: G::Scalar, +} + +impl NIFSForInnerProduct { + pub fn protocol_name() -> &'static [u8] { + b"NIFSForInnerProduct" + } + + pub fn prove( + U1: &InnerProductInstance, + W1: &InnerProductWitness, + U2: &InnerProductInstance, + W2: &InnerProductWitness, + transcript: &mut Transcript, + ) -> (Self, InnerProductInstance, InnerProductWitness) { + transcript.append_message(b"protocol-name", Self::protocol_name()); + + // add the two commitments and two public vectors to the transcript + U1.comm_a_vec + .append_to_transcript(b"U1_comm_a_vec", transcript); + U1.b_vec.append_to_transcript(b"U1_b_vec", transcript); + U2.comm_a_vec + .append_to_transcript(b"U2_comm_a_vec", transcript); + U2.b_vec.append_to_transcript(b"U2_b_vec", transcript); + + // compute the cross-term + let cross_term = inner_product(&W1.a_vec, &U2.b_vec) + inner_product(&W2.a_vec, &U1.b_vec); + + // add the cross-term to the transcript + cross_term.append_to_transcript(b"cross_term", transcript); + + // obtain a random challenge + let r = G::Scalar::challenge(b"r", transcript); + + // fold the vectors and their inner product + let a_vec = W1 + .a_vec + .par_iter() + .zip(W2.a_vec.par_iter()) + .map(|(x1, x2)| *x1 + r * x2) + .collect::>(); + let b_vec = U1 + .b_vec + .par_iter() + .zip(U2.b_vec.par_iter()) + .map(|(a1, a2)| *a1 + r * a2) + .collect::>(); + + let c = U1.c + r * r * U2.c + r * cross_term; + let comm_a_vec = U1.comm_a_vec + U2.comm_a_vec * r; + + let W = InnerProductWitness { a_vec }; + let U = InnerProductInstance { + comm_a_vec, + b_vec, + c, + }; + + (NIFSForInnerProduct { cross_term }, U, W) + } + + pub fn verify( + &self, + U1: &InnerProductInstance, + U2: &InnerProductInstance, + transcript: &mut Transcript, + ) -> InnerProductInstance { + transcript.append_message(b"protocol-name", Self::protocol_name()); + + // add the two commitments and two public vectors to the transcript + U1.comm_a_vec + .append_to_transcript(b"U1_comm_a_vec", transcript); + U1.b_vec.append_to_transcript(b"U1_b_vec", transcript); + U2.comm_a_vec + .append_to_transcript(b"U2_comm_a_vec", transcript); + U2.b_vec.append_to_transcript(b"U2_b_vec", transcript); + + // add the cross-term to the transcript + self + .cross_term + .append_to_transcript(b"cross_term", transcript); + + // obtain a random challenge + let r = G::Scalar::challenge(b"r", transcript); + + // fold the vectors and their inner product + let b_vec = U1 + .b_vec + .par_iter() + .zip(U2.b_vec.par_iter()) + .map(|(a1, a2)| *a1 + r * a2) + .collect::>(); + let c = U1.c + r * r * U2.c + r * self.cross_term; + let comm_a_vec = U1.comm_a_vec + U2.comm_a_vec * r; + + InnerProductInstance { + comm_a_vec, + b_vec, + c, + } + } +} + +/// An inner product argument +#[derive(Debug)] +pub struct InnerProductArgument { + L_vec: Vec>, + R_vec: Vec>, + a_hat: G::Scalar, + _p: PhantomData, +} + +impl InnerProductArgument { + fn protocol_name() -> &'static [u8] { + b"inner product argument" + } + + pub fn prove( + gens: &CommitGens, + gens_c: &CommitGens, + U: &InnerProductInstance, + W: &InnerProductWitness, + transcript: &mut Transcript, + ) -> Result { + transcript.append_message(b"protocol-name", Self::protocol_name()); + + if U.b_vec.len() != W.a_vec.len() { + return Err(NovaError::InvalidInputLength); + } + + U.comm_a_vec.append_to_transcript(b"comm_a_vec", transcript); + U.b_vec.append_to_transcript(b"b_vec", transcript); + U.c.append_to_transcript(b"c", transcript); + + // sample a random base for commiting to the inner product + let r = G::Scalar::challenge(b"r", transcript); + let gens_c = gens_c.scale(&r); + + // a closure that executes a step of the recursive inner product argument + let prove_inner = |a_vec: &[G::Scalar], + b_vec: &[G::Scalar], + gens: &CommitGens, + transcript: &mut Transcript| + -> Result< + ( + CompressedCommitment, + CompressedCommitment, + Vec, + Vec, + CommitGens, + ), + NovaError, + > { + let n = a_vec.len(); + let (gens_L, gens_R) = gens.split_at(n / 2); + + let c_L = inner_product(&a_vec[0..n / 2], &b_vec[n / 2..n]); + let c_R = inner_product(&a_vec[n / 2..n], &b_vec[0..n / 2]); + + let L = a_vec[0..n / 2] + .iter() + .chain(iter::once(&c_L)) + .copied() + .collect::>() + .commit(&gens_R.combine(&gens_c)) + .compress(); + let R = a_vec[n / 2..n] + .iter() + .chain(iter::once(&c_R)) + .copied() + .collect::>() + .commit(&gens_L.combine(&gens_c)) + .compress(); + + L.append_to_transcript(b"L", transcript); + R.append_to_transcript(b"R", transcript); + + let r = G::Scalar::challenge(b"challenge_r", transcript); + let r_inverse = r.invert().unwrap(); + + // fold the left half and the right half + let a_vec_folded = a_vec[0..n / 2] + .par_iter() + .zip(a_vec[n / 2..n].par_iter()) + .map(|(a_L, a_R)| *a_L * r + r_inverse * *a_R) + .collect::>(); + + let b_vec_folded = b_vec[0..n / 2] + .par_iter() + .zip(b_vec[n / 2..n].par_iter()) + .map(|(b_L, b_R)| *b_L * r_inverse + r * *b_R) + .collect::>(); + + let gens_folded = gens.fold(&r_inverse, &r); + + Ok((L, R, a_vec_folded, b_vec_folded, gens_folded)) + }; + + // two vectors to hold the logarithmic number of group elements + let mut L_vec: Vec> = Vec::new(); + let mut R_vec: Vec> = Vec::new(); + + // we create mutable copies of vectors and generators + let mut a_vec = W.a_vec.to_vec(); + let mut b_vec = U.b_vec.to_vec(); + let mut gens = gens.clone(); + for _i in 0..(U.b_vec.len() as f64).log2() as usize { + let (L, R, a_vec_folded, b_vec_folded, gens_folded) = + prove_inner(&a_vec, &b_vec, &gens, transcript)?; + L_vec.push(L); + R_vec.push(R); + + a_vec = a_vec_folded; + b_vec = b_vec_folded; + gens = gens_folded; + } + + Ok(InnerProductArgument { + L_vec, + R_vec, + a_hat: a_vec[0], + _p: Default::default(), + }) + } + + pub fn verify( + &self, + gens: &CommitGens, + gens_c: &CommitGens, + n: usize, + U: &InnerProductInstance, + transcript: &mut Transcript, + ) -> Result<(), NovaError> { + transcript.append_message(b"protocol-name", Self::protocol_name()); + if U.b_vec.len() != n + || n != (1 << self.L_vec.len()) + || self.L_vec.len() != self.R_vec.len() + || self.L_vec.len() >= 32 + { + return Err(NovaError::InvalidInputLength); + } + + U.comm_a_vec.append_to_transcript(b"comm_a_vec", transcript); + U.b_vec.append_to_transcript(b"b_vec", transcript); + U.c.append_to_transcript(b"c", transcript); + + // sample a random base for commiting to the inner product + let r = G::Scalar::challenge(b"r", transcript); + let gens_c = gens_c.scale(&r); + + let P = U.comm_a_vec + [U.c].commit(&gens_c); + + let batch_invert = |v: &[G::Scalar]| -> Result, NovaError> { + let mut products = vec![G::Scalar::zero(); v.len()]; + let mut acc = G::Scalar::one(); + + for i in 0..v.len() { + products[i] = acc; + acc *= v[i]; + } + + // we can compute an inversion only if acc is non-zero + if acc == G::Scalar::zero() { + return Err(NovaError::InvalidInputLength); + } + + // compute the inverse once for all entries + acc = acc.invert().unwrap(); + + let mut inv = vec![G::Scalar::zero(); v.len()]; + for i in 0..v.len() { + let tmp = acc * v[v.len() - 1 - i]; + inv[v.len() - 1 - i] = products[v.len() - 1 - i] * acc; + acc = tmp; + } + + Ok(inv) + }; + + // compute a vector of public coins using self.L_vec and self.R_vec + let r = (0..self.L_vec.len()) + .map(|i| { + self.L_vec[i].append_to_transcript(b"L", transcript); + self.R_vec[i].append_to_transcript(b"R", transcript); + G::Scalar::challenge(b"challenge_r", transcript) + }) + .collect::>(); + + // precompute scalars necessary for verification + let r_square: Vec = (0..self.L_vec.len()) + .into_par_iter() + .map(|i| r[i] * r[i]) + .collect(); + let r_inverse = batch_invert(&r)?; + let r_inverse_square: Vec = (0..self.L_vec.len()) + .into_par_iter() + .map(|i| r_inverse[i] * r_inverse[i]) + .collect(); + + // compute the vector with the tensor structure + let s = { + let mut s = vec![G::Scalar::zero(); n]; + s[0] = { + let mut v = G::Scalar::one(); + for r_inverse_i in &r_inverse { + v *= r_inverse_i; + } + v + }; + for i in 1..n { + let pos_in_r = (31 - (i as u32).leading_zeros()) as usize; + s[i] = s[i - (1 << pos_in_r)] * r_square[(self.L_vec.len() - 1) - pos_in_r]; + } + s + }; + + let gens_hat = { + let c = s.commit(gens).compress(); + CommitGens::reinterpret_commitments_as_gens(&[c])? + }; + + let b_hat = inner_product(&U.b_vec, &s); + + let P_hat = { + let gens_folded = { + let gens_L = CommitGens::reinterpret_commitments_as_gens(&self.L_vec)?; + let gens_R = CommitGens::reinterpret_commitments_as_gens(&self.R_vec)?; + let gens_P = CommitGens::reinterpret_commitments_as_gens(&[P.compress()])?; + gens_L.combine(&gens_R).combine(&gens_P) + }; + r_square + .iter() + .chain(r_inverse_square.iter()) + .chain(iter::once(&G::Scalar::one())) + .copied() + .collect::>() + .commit(&gens_folded) + }; + + if P_hat == [self.a_hat, self.a_hat * b_hat].commit(&gens_hat.combine(&gens_c)) { + Ok(()) + } else { + Err(NovaError::InvalidIPA) + } + } +} diff --git a/src/spartan_with_ipa_pc/mod.rs b/src/spartan_with_ipa_pc/mod.rs new file mode 100644 index 0000000..5063399 --- /dev/null +++ b/src/spartan_with_ipa_pc/mod.rs @@ -0,0 +1,381 @@ +//! This module implements RelaxedR1CSSNARKTrait using a Spartan variant +//! instantiated with an IPA-based polynomial commitment scheme +mod ipa; +mod polynomial; +mod sumcheck; + +use super::{ + commitments::CommitGens, + errors::NovaError, + r1cs::{R1CSGens, R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness}, + snark::{ProverKeyTrait, RelaxedR1CSSNARKTrait, VerifierKeyTrait}, + traits::{AppendToTranscriptTrait, ChallengeTrait, Group}, +}; +use core::cmp::max; +use ff::Field; +use ipa::{InnerProductArgument, InnerProductInstance, InnerProductWitness, NIFSForInnerProduct}; +use itertools::concat; +use merlin::Transcript; +use polynomial::{EqPolynomial, MultilinearPolynomial, SparsePolynomial}; +use rayon::prelude::*; +use sumcheck::SumcheckProof; + +/// A type that represents the prover's key +pub struct ProverKey { + gens_r1cs: R1CSGens, + gens_ipa: CommitGens, + S: R1CSShape, +} + +impl ProverKeyTrait for ProverKey { + fn new(gens: &R1CSGens, S: &R1CSShape) -> Self { + ProverKey { + gens_r1cs: gens.clone(), + gens_ipa: CommitGens::new(b"ipa", 1), + S: S.clone(), + } + } +} + +/// A type that represents the verifier's key +pub struct VerifierKey { + gens_r1cs: R1CSGens, + gens_ipa: CommitGens, + S: R1CSShape, +} + +impl VerifierKeyTrait for VerifierKey { + fn new(gens: &R1CSGens, S: &R1CSShape) -> Self { + VerifierKey { + gens_r1cs: gens.clone(), + gens_ipa: CommitGens::new(b"ipa", 1), + S: S.clone(), + } + } +} + +/// A succinct proof of knowledge of a witness to a relaxed R1CS instance +/// The proof is produced using Spartan's combination of the sum-check and +/// the commitment to a vector viewed as a polynomial commitment +pub struct RelaxedR1CSSNARK { + sc_proof_outer: SumcheckProof, + claims_outer: (G::Scalar, G::Scalar, G::Scalar), + sc_proof_inner: SumcheckProof, + eval_E: G::Scalar, + eval_W: G::Scalar, + nifs_ip: NIFSForInnerProduct, + ipa: InnerProductArgument, +} + +impl RelaxedR1CSSNARKTrait for RelaxedR1CSSNARK { + type ProverKey = ProverKey; + type VerifierKey = VerifierKey; + + /// produces a succinct proof of satisfiability of a RelaxedR1CS instance + fn prove( + pk: &Self::ProverKey, + U: &RelaxedR1CSInstance, + W: &RelaxedR1CSWitness, + ) -> Result { + let mut transcript = Transcript::new(b"RelaxedR1CSSNARK"); + + debug_assert!(pk.S.is_sat_relaxed(&pk.gens_r1cs, U, W).is_ok()); + + // sanity check that R1CSShape has certain size characteristics + assert_eq!(pk.S.num_cons.next_power_of_two(), pk.S.num_cons); + assert_eq!(pk.S.num_vars.next_power_of_two(), pk.S.num_vars); + assert_eq!(pk.S.num_io.next_power_of_two(), pk.S.num_io); + assert!(pk.S.num_io < pk.S.num_vars); + + // append the R1CSShape and RelaxedR1CSInstance to the transcript + pk.S.append_to_transcript(b"S", &mut transcript); + U.append_to_transcript(b"U", &mut transcript); + + // compute the full satisfying assignment by concatenating W.W, U.u, and U.X + let mut z = concat(vec![W.W.clone(), vec![U.u], U.X.clone()]); + + let (num_rounds_x, num_rounds_y) = ( + (pk.S.num_cons as f64).log2() as usize, + ((pk.S.num_vars as f64).log2() as usize + 1) as usize, + ); + + // outer sum-check + let tau = (0..num_rounds_x) + .map(|_i| G::Scalar::challenge(b"challenge_tau", &mut transcript)) + .collect(); + + let mut poly_tau = MultilinearPolynomial::new(EqPolynomial::new(tau).evals()); + let (mut poly_Az, mut poly_Bz, poly_Cz, mut poly_uCz_E) = { + let (poly_Az, poly_Bz, poly_Cz) = pk.S.multiply_vec(&z)?; + let poly_uCz_E = (0..pk.S.num_cons) + .map(|i| U.u * poly_Cz[i] + W.E[i]) + .collect::>(); + ( + MultilinearPolynomial::new(poly_Az), + MultilinearPolynomial::new(poly_Bz), + MultilinearPolynomial::new(poly_Cz), + MultilinearPolynomial::new(poly_uCz_E), + ) + }; + + let comb_func_outer = + |poly_A_comp: &G::Scalar, + poly_B_comp: &G::Scalar, + poly_C_comp: &G::Scalar, + poly_D_comp: &G::Scalar| + -> G::Scalar { *poly_A_comp * (*poly_B_comp * *poly_C_comp - *poly_D_comp) }; + let (sc_proof_outer, r_x, claims_outer) = SumcheckProof::prove_cubic_with_additive_term( + &G::Scalar::zero(), // claim is zero + num_rounds_x, + &mut poly_tau, + &mut poly_Az, + &mut poly_Bz, + &mut poly_uCz_E, + comb_func_outer, + &mut transcript, + ); + + // claims from the end of sum-check + let (claim_Az, claim_Bz): (G::Scalar, G::Scalar) = (claims_outer[1], claims_outer[2]); + + claim_Az.append_to_transcript(b"claim_Az", &mut transcript); + claim_Bz.append_to_transcript(b"claim_Bz", &mut transcript); + let claim_Cz = poly_Cz.evaluate(&r_x); + let eval_E = MultilinearPolynomial::new(W.E.clone()).evaluate(&r_x); + claim_Cz.append_to_transcript(b"claim_Cz", &mut transcript); + eval_E.append_to_transcript(b"eval_E", &mut transcript); + + // inner sum-check + let r_A = G::Scalar::challenge(b"challenge_rA", &mut transcript); + let r_B = G::Scalar::challenge(b"challenge_rB", &mut transcript); + let r_C = G::Scalar::challenge(b"challenge_rC", &mut transcript); + let claim_inner_joint = r_A * claim_Az + r_B * claim_Bz + r_C * claim_Cz; + + let poly_ABC = { + // compute the initial evaluation table for R(\tau, x) + let evals_rx = EqPolynomial::new(r_x.clone()).evals(); + + // Bounds "row" variables of (A, B, C) matrices viewed as 2d multilinear polynomials + let compute_eval_table_sparse = + |S: &R1CSShape, rx: &[G::Scalar]| -> (Vec, Vec, Vec) { + assert_eq!(rx.len(), S.num_cons); + + let inner = |M: &Vec<(usize, usize, G::Scalar)>, M_evals: &mut Vec| { + for (row, col, val) in M { + M_evals[*col] += rx[*row] * val; + } + }; + + let (A_evals, (B_evals, C_evals)) = rayon::join( + || { + let mut A_evals: Vec = vec![G::Scalar::zero(); 2 * S.num_vars]; + inner(&S.A, &mut A_evals); + A_evals + }, + || { + rayon::join( + || { + let mut B_evals: Vec = vec![G::Scalar::zero(); 2 * S.num_vars]; + inner(&S.B, &mut B_evals); + B_evals + }, + || { + let mut C_evals: Vec = vec![G::Scalar::zero(); 2 * S.num_vars]; + inner(&S.C, &mut C_evals); + C_evals + }, + ) + }, + ); + + (A_evals, B_evals, C_evals) + }; + + let (evals_A, evals_B, evals_C) = compute_eval_table_sparse(&pk.S, &evals_rx); + + assert_eq!(evals_A.len(), evals_B.len()); + assert_eq!(evals_A.len(), evals_C.len()); + (0..evals_A.len()) + .into_par_iter() + .map(|i| r_A * evals_A[i] + r_B * evals_B[i] + r_C * evals_C[i]) + .collect::>() + }; + + let poly_z = { + z.resize(pk.S.num_vars * 2, G::Scalar::zero()); + z + }; + + let comb_func = |poly_A_comp: &G::Scalar, poly_B_comp: &G::Scalar| -> G::Scalar { + *poly_A_comp * *poly_B_comp + }; + let (sc_proof_inner, r_y, _claims_inner) = SumcheckProof::prove_quad( + &claim_inner_joint, + num_rounds_y, + &mut MultilinearPolynomial::new(poly_ABC), + &mut MultilinearPolynomial::new(poly_z), + comb_func, + &mut transcript, + ); + + let eval_W = MultilinearPolynomial::new(W.W.clone()).evaluate(&r_y[1..]); + eval_W.append_to_transcript(b"eval_W", &mut transcript); + + let (nifs_ip, r_U, r_W) = NIFSForInnerProduct::prove( + &InnerProductInstance::new(&U.comm_E, &EqPolynomial::new(r_x).evals(), &eval_E), + &InnerProductWitness::new(&W.E), + &InnerProductInstance::new( + &U.comm_W, + &EqPolynomial::new(r_y[1..].to_vec()).evals(), + &eval_W, + ), + &InnerProductWitness::new(&W.W), + &mut transcript, + ); + + let ipa = InnerProductArgument::prove( + &pk.gens_r1cs.gens, + &pk.gens_ipa, + &r_U, + &r_W, + &mut transcript, + )?; + + Ok(RelaxedR1CSSNARK { + sc_proof_outer, + claims_outer: (claim_Az, claim_Bz, claim_Cz), + sc_proof_inner, + eval_W, + eval_E, + nifs_ip, + ipa, + }) + } + + /// verifies a proof of satisfiability of a RelaxedR1CS instance + fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance) -> Result<(), NovaError> { + let mut transcript = Transcript::new(b"RelaxedR1CSSNARK"); + + // append the R1CSShape and RelaxedR1CSInstance to the transcript + vk.S.append_to_transcript(b"S", &mut transcript); + U.append_to_transcript(b"U", &mut transcript); + + let (num_rounds_x, num_rounds_y) = ( + (vk.S.num_cons as f64).log2() as usize, + ((vk.S.num_vars as f64).log2() as usize + 1) as usize, + ); + + // outer sum-check + let tau = (0..num_rounds_x) + .map(|_i| G::Scalar::challenge(b"challenge_tau", &mut transcript)) + .collect::>(); + + let (claim_outer_final, r_x) = + self + .sc_proof_outer + .verify(G::Scalar::zero(), num_rounds_x, 3, &mut transcript)?; + + // verify claim_outer_final + let (claim_Az, claim_Bz, claim_Cz) = self.claims_outer; + let taus_bound_rx = EqPolynomial::new(tau).evaluate(&r_x); + let claim_outer_final_expected = + taus_bound_rx * (claim_Az * claim_Bz - U.u * claim_Cz - self.eval_E); + if claim_outer_final != claim_outer_final_expected { + return Err(NovaError::InvalidSumcheckProof); + } + + self + .claims_outer + .0 + .append_to_transcript(b"claim_Az", &mut transcript); + self + .claims_outer + .1 + .append_to_transcript(b"claim_Bz", &mut transcript); + self + .claims_outer + .2 + .append_to_transcript(b"claim_Cz", &mut transcript); + self.eval_E.append_to_transcript(b"eval_E", &mut transcript); + + // inner sum-check + let r_A = G::Scalar::challenge(b"challenge_rA", &mut transcript); + let r_B = G::Scalar::challenge(b"challenge_rB", &mut transcript); + let r_C = G::Scalar::challenge(b"challenge_rC", &mut transcript); + let claim_inner_joint = + r_A * self.claims_outer.0 + r_B * self.claims_outer.1 + r_C * self.claims_outer.2; + + let (claim_inner_final, r_y) = + self + .sc_proof_inner + .verify(claim_inner_joint, num_rounds_y, 2, &mut transcript)?; + + // verify claim_inner_final + let eval_Z = { + let eval_X = { + // constant term + let mut poly_X = vec![(0, U.u)]; + //remaining inputs + poly_X.extend( + (0..U.X.len()) + .map(|i| (i + 1, U.X[i])) + .collect::>(), + ); + SparsePolynomial::new((vk.S.num_vars as f64).log2() as usize, poly_X) + .evaluate(&r_y[1..].to_vec()) + }; + (G::Scalar::one() - r_y[0]) * self.eval_W + r_y[0] * eval_X + }; + + let evaluate_as_sparse_polynomial = |S: &R1CSShape, + r_x: &[G::Scalar], + r_y: &[G::Scalar]| + -> (G::Scalar, G::Scalar, G::Scalar) { + let evaluate_with_table = + |M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar { + (0..M.len()) + .map(|i| { + let (row, col, val) = M[i]; + T_x[row] * T_y[col] * val + }) + .fold(G::Scalar::zero(), |acc, x| acc + x) + }; + + let T_x = EqPolynomial::new(r_x.to_vec()).evals(); + let T_y = EqPolynomial::new(r_y.to_vec()).evals(); + let eval_A_r = evaluate_with_table(&S.A, &T_x, &T_y); + let eval_B_r = evaluate_with_table(&S.B, &T_x, &T_y); + let eval_C_r = evaluate_with_table(&S.C, &T_x, &T_y); + (eval_A_r, eval_B_r, eval_C_r) + }; + + let (eval_A_r, eval_B_r, eval_C_r) = evaluate_as_sparse_polynomial(&vk.S, &r_x, &r_y); + let claim_inner_final_expected = (r_A * eval_A_r + r_B * eval_B_r + r_C * eval_C_r) * eval_Z; + if claim_inner_final != claim_inner_final_expected { + return Err(NovaError::InvalidSumcheckProof); + } + + // verify eval_W and eval_E + self.eval_W.append_to_transcript(b"eval_W", &mut transcript); //eval_E is already in the transcript + + let r_U = self.nifs_ip.verify( + &InnerProductInstance::new(&U.comm_E, &EqPolynomial::new(r_x).evals(), &self.eval_E), + &InnerProductInstance::new( + &U.comm_W, + &EqPolynomial::new(r_y[1..].to_vec()).evals(), + &self.eval_W, + ), + &mut transcript, + ); + + self.ipa.verify( + &vk.gens_r1cs.gens, + &vk.gens_ipa, + max(vk.S.num_vars, vk.S.num_cons), + &r_U, + &mut transcript, + )?; + + Ok(()) + } +} diff --git a/src/spartan_with_ipa_pc/polynomial.rs b/src/spartan_with_ipa_pc/polynomial.rs new file mode 100644 index 0000000..3c1a389 --- /dev/null +++ b/src/spartan_with_ipa_pc/polynomial.rs @@ -0,0 +1,150 @@ +use core::ops::Index; +use ff::PrimeField; +use rayon::prelude::*; + +pub struct EqPolynomial { + r: Vec, +} + +impl EqPolynomial { + pub fn new(r: Vec) -> Self { + EqPolynomial { r } + } + + pub fn evaluate(&self, rx: &[Scalar]) -> Scalar { + assert_eq!(self.r.len(), rx.len()); + (0..rx.len()) + .map(|i| rx[i] * self.r[i] + (Scalar::one() - rx[i]) * (Scalar::one() - self.r[i])) + .fold(Scalar::one(), |acc, item| acc * item) + } + + pub fn evals(&self) -> Vec { + let ell = self.r.len(); + let mut evals: Vec = vec![Scalar::zero(); (2_usize).pow(ell as u32) as usize]; + let mut size = 1; + evals[0] = Scalar::one(); + + for r in self.r.iter().rev() { + let (evals_left, evals_right) = evals.split_at_mut(size); + let (evals_right, _) = evals_right.split_at_mut(size); + + evals_left + .par_iter_mut() + .zip(evals_right.par_iter_mut()) + .for_each(|(x, y)| { + *y = *x * r; + *x -= &*y; + }); + + size *= 2; + } + evals + } +} + +#[derive(Debug)] +pub struct MultilinearPolynomial { + num_vars: usize, // the number of variables in the multilinear polynomial + Z: Vec, // evaluations of the polynomial in all the 2^num_vars Boolean inputs +} + +impl MultilinearPolynomial { + pub fn new(Z: Vec) -> Self { + assert_eq!(Z.len(), (2_usize).pow((Z.len() as f64).log2() as u32)); + MultilinearPolynomial { + num_vars: (Z.len() as f64).log2() as usize, + Z, + } + } + + pub fn get_num_vars(&self) -> usize { + self.num_vars + } + + pub fn len(&self) -> usize { + self.Z.len() + } + + pub fn bound_poly_var_top(&mut self, r: &Scalar) { + let n = self.len() / 2; + + let (left, right) = self.Z.split_at_mut(n); + let (right, _) = right.split_at(n); + + left + .par_iter_mut() + .zip(right.par_iter()) + .for_each(|(a, b)| { + *a += *r * (*b - *a); + }); + + self.Z.resize(n, Scalar::zero()); + self.num_vars -= 1; + } + + // returns Z(r) in O(n) time + pub fn evaluate(&self, r: &[Scalar]) -> Scalar { + // r must have a value for each variable + assert_eq!(r.len(), self.get_num_vars()); + let chis = EqPolynomial::new(r.to_vec()).evals(); + assert_eq!(chis.len(), self.Z.len()); + + (0..chis.len()) + .into_par_iter() + .map(|i| chis[i] * self.Z[i]) + .reduce(Scalar::zero, |x, y| x + y) + } +} + +impl Index for MultilinearPolynomial { + type Output = Scalar; + + #[inline(always)] + fn index(&self, _index: usize) -> &Scalar { + &(self.Z[_index]) + } +} + +pub struct SparsePolynomial { + num_vars: usize, + Z: Vec<(usize, Scalar)>, +} + +impl SparsePolynomial { + pub fn new(num_vars: usize, Z: Vec<(usize, Scalar)>) -> Self { + SparsePolynomial { num_vars, Z } + } + + fn compute_chi(a: &[bool], r: &[Scalar]) -> Scalar { + assert_eq!(a.len(), r.len()); + let mut chi_i = Scalar::one(); + for j in 0..r.len() { + if a[j] { + chi_i *= r[j]; + } else { + chi_i *= Scalar::one() - r[j]; + } + } + chi_i + } + + // Takes O(n log n). TODO: do this in O(n) where n is the number of entries in Z + pub fn evaluate(&self, r: &[Scalar]) -> Scalar { + assert_eq!(self.num_vars, r.len()); + + let get_bits = |num: usize, num_bits: usize| -> Vec { + (0..num_bits) + .into_par_iter() + .map(|shift_amount| ((num & (1 << (num_bits - shift_amount - 1))) > 0)) + .collect::>() + }; + + (0..self.Z.len()) + .into_par_iter() + .map(|i| { + let bits = get_bits(self.Z[i].0, r.len()); + SparsePolynomial::compute_chi(&bits, r) * self.Z[i].1 + }) + .reduce(Scalar::zero, |x, y| x + y) + } +} diff --git a/src/spartan_with_ipa_pc/sumcheck.rs b/src/spartan_with_ipa_pc/sumcheck.rs new file mode 100644 index 0000000..3501987 --- /dev/null +++ b/src/spartan_with_ipa_pc/sumcheck.rs @@ -0,0 +1,331 @@ +#![allow(clippy::too_many_arguments)] +#![allow(clippy::type_complexity)] +use super::polynomial::MultilinearPolynomial; +use crate::errors::NovaError; +use crate::traits::{AppendToTranscriptTrait, ChallengeTrait, Group}; +use core::marker::PhantomData; +use ff::Field; +use merlin::Transcript; +use rayon::prelude::*; + +#[derive(Debug)] +pub struct SumcheckProof { + compressed_polys: Vec>, +} + +impl SumcheckProof { + pub fn verify( + &self, + claim: G::Scalar, + num_rounds: usize, + degree_bound: usize, + transcript: &mut Transcript, + ) -> Result<(G::Scalar, Vec), NovaError> { + let mut e = claim; + let mut r: Vec = Vec::new(); + + // verify that there is a univariate polynomial for each round + if self.compressed_polys.len() != num_rounds { + return Err(NovaError::InvalidSumcheckProof); + } + + for i in 0..self.compressed_polys.len() { + let poly = self.compressed_polys[i].decompress(&e); + + // verify degree bound + if poly.degree() != degree_bound { + return Err(NovaError::InvalidSumcheckProof); + } + + // check if G_k(0) + G_k(1) = e + if poly.eval_at_zero() + poly.eval_at_one() != e { + return Err(NovaError::InvalidSumcheckProof); + } + + // append the prover's message to the transcript + poly.append_to_transcript(b"poly", transcript); + + //derive the verifier's challenge for the next round + let r_i = G::Scalar::challenge(b"challenge_nextround", transcript); + + r.push(r_i); + + // evaluate the claimed degree-ell polynomial at r_i + e = poly.evaluate(&r_i); + } + + Ok((e, r)) + } + + pub fn prove_quad( + claim: &G::Scalar, + num_rounds: usize, + poly_A: &mut MultilinearPolynomial, + poly_B: &mut MultilinearPolynomial, + comb_func: F, + transcript: &mut Transcript, + ) -> (Self, Vec, Vec) + where + F: Fn(&G::Scalar, &G::Scalar) -> G::Scalar + Sync, + { + let mut r: Vec = Vec::new(); + let mut polys: Vec> = Vec::new(); + let mut claim_per_round = *claim; + for _ in 0..num_rounds { + let poly = { + let len = poly_A.len() / 2; + + // Make an iterator returning the contributions to the evaluations + let (eval_point_0, eval_point_2) = (0..len) + .into_par_iter() + .map(|i| { + // eval 0: bound_func is A(low) + let eval_point_0 = comb_func(&poly_A[i], &poly_B[i]); + + // eval 2: bound_func is -A(low) + 2*A(high) + let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i]; + let eval_point_2 = comb_func(&poly_A_bound_point, &poly_B_bound_point); + (eval_point_0, eval_point_2) + }) + .reduce( + || (G::Scalar::zero(), G::Scalar::zero()), + |a, b| (a.0 + b.0, a.1 + b.1), + ); + + let evals = vec![eval_point_0, claim_per_round - eval_point_0, eval_point_2]; + UniPoly::from_evals(&evals) + }; + + // append the prover's message to the transcript + poly.append_to_transcript(b"poly", transcript); + + //derive the verifier's challenge for the next round + let r_i = G::Scalar::challenge(b"challenge_nextround", transcript); + r.push(r_i); + polys.push(poly.compress()); + + // Set up next round + claim_per_round = poly.evaluate(&r_i); + + // bound all tables to the verifier's challenege + poly_A.bound_poly_var_top(&r_i); + poly_B.bound_poly_var_top(&r_i); + } + + ( + SumcheckProof { + compressed_polys: polys, + }, + r, + vec![poly_A[0], poly_B[0]], + ) + } + + pub fn prove_cubic_with_additive_term( + claim: &G::Scalar, + num_rounds: usize, + poly_A: &mut MultilinearPolynomial, + poly_B: &mut MultilinearPolynomial, + poly_C: &mut MultilinearPolynomial, + poly_D: &mut MultilinearPolynomial, + comb_func: F, + transcript: &mut Transcript, + ) -> (Self, Vec, Vec) + where + F: Fn(&G::Scalar, &G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar + Sync, + { + let mut r: Vec = Vec::new(); + let mut polys: Vec> = Vec::new(); + let mut claim_per_round = *claim; + + for _ in 0..num_rounds { + let poly = { + let len = poly_A.len() / 2; + + // Make an iterator returning the contributions to the evaluations + let (eval_point_0, eval_point_2, eval_point_3) = (0..len) + .into_par_iter() + .map(|i| { + // eval 0: bound_func is A(low) + let eval_point_0 = comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]); + + // eval 2: bound_func is -A(low) + 2*A(high) + let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i]; + let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i]; + let poly_D_bound_point = poly_D[len + i] + poly_D[len + i] - poly_D[i]; + let eval_point_2 = comb_func( + &poly_A_bound_point, + &poly_B_bound_point, + &poly_C_bound_point, + &poly_D_bound_point, + ); + + // eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2) + let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i]; + let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i]; + let poly_D_bound_point = poly_D_bound_point + poly_D[len + i] - poly_D[i]; + let eval_point_3 = comb_func( + &poly_A_bound_point, + &poly_B_bound_point, + &poly_C_bound_point, + &poly_D_bound_point, + ); + (eval_point_0, eval_point_2, eval_point_3) + }) + .reduce( + || (G::Scalar::zero(), G::Scalar::zero(), G::Scalar::zero()), + |a, b| (a.0 + b.0, a.1 + b.1, a.2 + b.2), + ); + + let evals = vec![ + eval_point_0, + claim_per_round - eval_point_0, + eval_point_2, + eval_point_3, + ]; + UniPoly::from_evals(&evals) + }; + + // append the prover's message to the transcript + poly.append_to_transcript(b"poly", transcript); + + //derive the verifier's challenge for the next round + let r_i = G::Scalar::challenge(b"challenge_nextround", transcript); + r.push(r_i); + polys.push(poly.compress()); + + // Set up next round + claim_per_round = poly.evaluate(&r_i); + + // bound all tables to the verifier's challenege + poly_A.bound_poly_var_top(&r_i); + poly_B.bound_poly_var_top(&r_i); + poly_C.bound_poly_var_top(&r_i); + poly_D.bound_poly_var_top(&r_i); + } + + ( + SumcheckProof { + compressed_polys: polys, + }, + r, + vec![poly_A[0], poly_B[0], poly_C[0], poly_D[0]], + ) + } +} + +// ax^2 + bx + c stored as vec![a,b,c] +// ax^3 + bx^2 + cx + d stored as vec![a,b,c,d] +#[derive(Debug)] +pub struct UniPoly { + coeffs: Vec, +} + +// ax^2 + bx + c stored as vec![a,c] +// ax^3 + bx^2 + cx + d stored as vec![a,c,d] +#[derive(Debug)] +pub struct CompressedUniPoly { + coeffs_except_linear_term: Vec, + _p: PhantomData, +} + +impl UniPoly { + pub fn from_evals(evals: &[G::Scalar]) -> Self { + // we only support degree-2 or degree-3 univariate polynomials + assert!(evals.len() == 3 || evals.len() == 4); + let coeffs = if evals.len() == 3 { + // ax^2 + bx + c + let two_inv = G::Scalar::from(2).invert().unwrap(); + + let c = evals[0]; + let a = two_inv * (evals[2] - evals[1] - evals[1] + c); + let b = evals[1] - c - a; + vec![c, b, a] + } else { + // ax^3 + bx^2 + cx + d + let two_inv = G::Scalar::from(2).invert().unwrap(); + let six_inv = G::Scalar::from(6).invert().unwrap(); + + let d = evals[0]; + let a = six_inv + * (evals[3] - evals[2] - evals[2] - evals[2] + evals[1] + evals[1] + evals[1] - evals[0]); + let b = two_inv + * (evals[0] + evals[0] - evals[1] - evals[1] - evals[1] - evals[1] - evals[1] + + evals[2] + + evals[2] + + evals[2] + + evals[2] + - evals[3]); + let c = evals[1] - d - a - b; + vec![d, c, b, a] + }; + + UniPoly { coeffs } + } + + pub fn degree(&self) -> usize { + self.coeffs.len() - 1 + } + + pub fn eval_at_zero(&self) -> G::Scalar { + self.coeffs[0] + } + + pub fn eval_at_one(&self) -> G::Scalar { + (0..self.coeffs.len()) + .into_par_iter() + .map(|i| self.coeffs[i]) + .reduce(G::Scalar::zero, |a, b| a + b) + } + + pub fn evaluate(&self, r: &G::Scalar) -> G::Scalar { + let mut eval = self.coeffs[0]; + let mut power = *r; + for coeff in self.coeffs.iter().skip(1) { + eval += power * coeff; + power *= r; + } + eval + } + + pub fn compress(&self) -> CompressedUniPoly { + let coeffs_except_linear_term = [&self.coeffs[0..1], &self.coeffs[2..]].concat(); + assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len()); + CompressedUniPoly { + coeffs_except_linear_term, + _p: Default::default(), + } + } +} + +impl CompressedUniPoly { + // we require eval(0) + eval(1) = hint, so we can solve for the linear term as: + // linear_term = hint - 2 * constant_term - deg2 term - deg3 term + pub fn decompress(&self, hint: &G::Scalar) -> UniPoly { + let mut linear_term = + *hint - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0]; + for i in 1..self.coeffs_except_linear_term.len() { + linear_term -= self.coeffs_except_linear_term[i]; + } + + let mut coeffs: Vec = Vec::new(); + coeffs.extend(vec![&self.coeffs_except_linear_term[0]]); + coeffs.extend(vec![&linear_term]); + coeffs.extend(self.coeffs_except_linear_term[1..].to_vec()); + assert_eq!(self.coeffs_except_linear_term.len() + 1, coeffs.len()); + UniPoly { coeffs } + } +} + +impl AppendToTranscriptTrait for UniPoly { + fn append_to_transcript(&self, label: &'static [u8], transcript: &mut Transcript) { + transcript.append_message(label, b"UniPoly_begin"); + for i in 0..self.coeffs.len() { + self.coeffs[i].append_to_transcript(b"coeff", transcript); + } + transcript.append_message(label, b"UniPoly_end"); + } +} diff --git a/src/traits.rs b/src/traits.rs index b65698c..56d5718 100644 --- a/src/traits.rs +++ b/src/traits.rs @@ -19,18 +19,20 @@ pub trait Group: + GroupOpsOwned + ScalarMul<::Scalar> + ScalarMulOwned<::Scalar> + + Send + + Sync { /// A type representing an element of the base field of the group type Base: PrimeField + PrimeFieldBits; /// A type representing an element of the scalar field of the group - type Scalar: PrimeField + PrimeFieldBits + ChallengeTrait; + type Scalar: PrimeField + PrimeFieldBits + ChallengeTrait + Send + Sync; /// A type representing the compressed version of the group element type CompressedGroupElement: CompressedGroup; /// A type representing preprocessed group element - type PreprocessedGroupElement; + type PreprocessedGroupElement: Clone + Send + Sync; /// A type that represents a hash function that consumes elements /// from the base field and squeezes out elements of the scalar field @@ -45,6 +47,9 @@ pub trait Group: /// Compresses the group element fn compress(&self) -> Self::CompressedGroupElement; + /// Produces a preprocessed element + fn preprocessed(&self) -> Self::PreprocessedGroupElement; + /// Produce a vector of group elements using a static label fn from_label(label: &'static [u8], n: usize) -> Vec; @@ -88,7 +93,7 @@ pub trait ChallengeTrait { /// A helper trait that defines the behavior of a hash function that we use as an RO pub trait HashFuncTrait { /// A type representing constants/parameters associated with the hash function - type Constants: HashFuncConstantsTrait + Clone; + type Constants: HashFuncConstantsTrait + Clone + Send + Sync; /// Initializes the hash function fn new(constants: Self::Constants) -> Self; @@ -135,7 +140,7 @@ pub trait ScalarMulOwned: for<'r> ScalarMul<&'r Rhs, Output> impl ScalarMulOwned for T where T: for<'r> ScalarMul<&'r Rhs, Output> {} /// A helper trait for a step of the incremental computation (i.e., circuit for F) -pub trait StepCircuit { +pub trait StepCircuit: Send + Sync + Clone { /// Sythesize the circuit for a computation step and return variable /// that corresponds to the output of the step z_{i+1} fn synthesize>(