Browse Source

A simplified version of the nonnative gadgets (#122)

main
Srinath Setty 1 year ago
committed by GitHub
parent
commit
23178ff54d
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 1146 additions and 388 deletions
  1. +4
    -3
      Cargo.toml
  2. +0
    -371
      src/bellperson/mod.rs
  3. +4
    -4
      src/gadgets/mod.rs
  4. +830
    -0
      src/gadgets/nonnative/bignat.rs
  5. +39
    -0
      src/gadgets/nonnative/mod.rs
  6. +261
    -0
      src/gadgets/nonnative/util.rs
  7. +6
    -8
      src/gadgets/r1cs.rs
  8. +1
    -1
      src/gadgets/utils.rs
  9. +1
    -1
      src/r1cs.rs

+ 4
- 3
Cargo.toml

@ -12,7 +12,7 @@ keywords = ["zkSNARKs", "cryptography", "proofs"]
[dependencies]
bellperson = { version = "0.24", default-features = false }
ff = "0.12.0"
ff = { version = "0.12.0", features = ["derive"]}
merlin = "2.0.0"
rand = "0.8.4"
digest = "0.8.1"
@ -26,13 +26,14 @@ pasta_curves = { version = "0.4.0", features = ["repr-c"] }
pasta-msm = "0.1.3"
neptune = { version = "8.1.0", default-features = false }
generic-array = "0.14.4"
bellperson-nonnative = { version = "0.4.0", default-features = false }
num-bigint = { version = "0.4", features = ["serde", "rand"] }
num-traits = "0.2"
num-integer = "0.1"
serde = { version = "1.0", features = ["derive"] }
bincode = "1.2.1"
flate2 = "1.0"
bitvec = "1.0"
byteorder = "1.4.3"
[dev-dependencies]
criterion = "0.3.1"
@ -46,4 +47,4 @@ name = "compressed-snark"
harness = false
[features]
default = [ "bellperson/default", "bellperson-nonnative/default", "neptune/default" ]
default = [ "bellperson/default", "neptune/default" ]

+ 0
- 371
src/bellperson/mod.rs

@ -14,13 +14,7 @@ mod tests {
solver::SatisfyingAssignment,
};
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use bellperson_nonnative::{
mp::bignat::BigNat,
util::{convert::nat_to_f, num::Num},
};
use ff::PrimeField;
use num_bigint::BigInt;
use num_traits::Num as OtherNum;
fn synthesize_alloc_bit<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
@ -63,369 +57,4 @@ mod tests {
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
fn synthesize_use_cs_one<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
) -> Result<(), SynthesisError> {
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one()))?;
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::one()))?;
cs.enforce(
|| "check a = b",
|lc| lc + a.get_variable() - b.get_variable(),
|lc| lc + CS::one(),
|lc| lc,
);
let _ = a.inputize(cs.namespace(|| "a is input"));
let _ = b.inputize(cs.namespace(|| "b is input"));
Ok(())
}
fn synthesize_use_cs_one_after_inputize<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
) -> Result<(), SynthesisError> {
let a = AllocatedNum::alloc(cs.namespace(|| "a"), || Ok(Fr::one()))?;
let b = AllocatedNum::alloc(cs.namespace(|| "b"), || Ok(Fr::one()))?;
let _ = a.inputize(cs.namespace(|| "a is input"));
cs.enforce(
|| "check a = b",
|lc| lc + a.get_variable() - b.get_variable(),
|lc| lc + CS::one(),
|lc| lc,
);
let _ = b.inputize(cs.namespace(|| "b is input"));
Ok(())
}
#[test]
fn test_use_cs_one() {
type G = pasta_curves::pallas::Point;
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_use_cs_one(&mut cs);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_use_cs_one(&mut cs);
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
#[test]
fn test_use_cs_one_after_inputize() {
type G = pasta_curves::pallas::Point;
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_use_cs_one_after_inputize(&mut cs);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_use_cs_one_after_inputize(&mut cs);
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
fn synthesize_is_equal<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
a_val: &BigInt,
limb_width: usize,
n_limbs: usize,
) -> Result<(), SynthesisError> {
let a1 = BigNat::alloc_from_nat(
cs.namespace(|| "alloc a2"),
|| Ok(a_val.clone()),
limb_width,
n_limbs,
)?;
let _ = a1.inputize(cs.namespace(|| "make a input"));
let a_num = Num::alloc(cs.namespace(|| "alloc a num"), || {
Ok(nat_to_f(a_val).unwrap())
})?;
let a2 = BigNat::from_num(
cs.namespace(|| "allocate a1_limbs"),
a_num,
limb_width,
n_limbs,
)?;
a1.equal_when_carried(cs.namespace(|| "check equal"), &a2)?;
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn synthesize_mult_mod<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
a_val: &BigInt,
b_val: &BigInt,
m_val: &BigInt,
q_val: &BigInt,
r_val: &BigInt,
limb_width: usize,
n_limbs: usize,
) -> Result<(), SynthesisError> {
let a_num = Num::alloc(cs.namespace(|| "alloc a num"), || {
Ok(nat_to_f(a_val).unwrap())
})?;
let m = BigNat::alloc_from_nat(
cs.namespace(|| "m"),
|| Ok(m_val.clone()),
limb_width,
n_limbs,
)?;
m.inputize(cs.namespace(|| "modulus m"))?;
let a = BigNat::from_num(
cs.namespace(|| "allocate a_limbs"),
a_num,
limb_width,
n_limbs,
)?;
let b = BigNat::alloc_from_nat(
cs.namespace(|| "b"),
|| Ok(b_val.clone()),
limb_width,
n_limbs,
)?;
let q = BigNat::alloc_from_nat(
cs.namespace(|| "q"),
|| Ok(q_val.clone()),
limb_width,
n_limbs,
)?;
let r = BigNat::alloc_from_nat(
cs.namespace(|| "r"),
|| Ok(r_val.clone()),
limb_width,
n_limbs,
)?;
let (qa, ra) = a.mult_mod(cs.namespace(|| "prod"), &b, &m)?;
qa.equal(cs.namespace(|| "qcheck"), &q)?;
ra.equal(cs.namespace(|| "rcheck"), &r)?;
Ok(())
}
fn synthesize_add<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
a_val: &BigInt,
b_val: &BigInt,
c_val: &BigInt,
limb_width: usize,
n_limbs: usize,
) -> Result<(), SynthesisError> {
let a = BigNat::alloc_from_nat(
cs.namespace(|| "a"),
|| Ok(a_val.clone()),
limb_width,
n_limbs,
)?;
a.inputize(cs.namespace(|| "input a"))?;
let b = BigNat::alloc_from_nat(
cs.namespace(|| "b"),
|| Ok(b_val.clone()),
limb_width,
n_limbs,
)?;
b.inputize(cs.namespace(|| "input b"))?;
let c = BigNat::alloc_from_nat(
cs.namespace(|| "c"),
|| Ok(c_val.clone()),
limb_width,
n_limbs,
)?;
let ca = a.add::<CS>(&b)?;
ca.equal(cs.namespace(|| "ccheck"), &c)?;
Ok(())
}
fn synthesize_add_mod<Fr: PrimeField, CS: ConstraintSystem<Fr>>(
cs: &mut CS,
a_val: &BigInt,
b_val: &BigInt,
c_val: &BigInt,
m_val: &BigInt,
limb_width: usize,
n_limbs: usize,
) -> Result<(), SynthesisError> {
let a = BigNat::alloc_from_nat(
cs.namespace(|| "a"),
|| Ok(a_val.clone()),
limb_width,
n_limbs,
)?;
a.inputize(cs.namespace(|| "input a"))?;
let b = BigNat::alloc_from_nat(
cs.namespace(|| "b"),
|| Ok(b_val.clone()),
limb_width,
n_limbs,
)?;
b.inputize(cs.namespace(|| "input b"))?;
let c = BigNat::alloc_from_nat(
cs.namespace(|| "c"),
|| Ok(c_val.clone()),
limb_width,
n_limbs,
)?;
let m = BigNat::alloc_from_nat(
cs.namespace(|| "m"),
|| Ok(m_val.clone()),
limb_width,
n_limbs,
)?;
let d = a.add::<CS>(&b)?;
let ca = d.red_mod(cs.namespace(|| "reduce"), &m)?;
ca.equal(cs.namespace(|| "ccheck"), &c)?;
Ok(())
}
#[test]
fn test_mult_mod() {
type G = pasta_curves::pallas::Point;
// Set the inputs
let a_val = BigInt::from_str_radix(
"11572336752428856981970994795408771577024165681374400871001196932361466228192",
10,
)
.unwrap();
let b_val = BigInt::from_str_radix(
"87673389408848523602668121701204553693362841135953267897017930941776218798802",
10,
)
.unwrap();
let m_val = BigInt::from_str_radix(
"40000000000000000000000000000000224698fc094cf91b992d30ed00000001",
16,
)
.unwrap();
let q_val = BigInt::from_str_radix(
"35048542371029440058224000662033175648615707461806414787901284501179083518342",
10,
)
.unwrap();
let r_val = BigInt::from_str_radix(
"26362617993085418618858432307761590013874563896298265114483698919121453084730",
10,
)
.unwrap();
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_mult_mod(&mut cs, &a_val, &b_val, &m_val, &q_val, &r_val, 32, 8);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
println!("Mult mod constraint no: {}", cs.num_constraints());
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_mult_mod(&mut cs, &a_val, &b_val, &m_val, &q_val, &r_val, 32, 8);
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
#[test]
fn test_add() {
type G = pasta_curves::pallas::Point;
// Set the inputs
let a_val = BigInt::from_str_radix(
"11572336752428856981970994795408771577024165681374400871001196932361466228192",
10,
)
.unwrap();
let b_val = BigInt::from_str_radix("1", 10).unwrap();
let c_val = BigInt::from_str_radix(
"11572336752428856981970994795408771577024165681374400871001196932361466228193",
10,
)
.unwrap();
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_add(&mut cs, &a_val, &b_val, &c_val, 64, 4);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
println!("Add mod constraint no: {}", cs.num_constraints());
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_add(&mut cs, &a_val, &b_val, &c_val, 64, 4);
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
#[test]
fn test_add_mod() {
type G = pasta_curves::pallas::Point;
// Set the inputs
let a_val = BigInt::from_str_radix(
"11572336752428856981970994795408771577024165681374400871001196932361466228192",
10,
)
.unwrap();
let b_val = BigInt::from_str_radix("1", 10).unwrap();
let c_val = BigInt::from_str_radix(
"11572336752428856981970994795408771577024165681374400871001196932361466228193",
10,
)
.unwrap();
let m_val = BigInt::from_str_radix(
"40000000000000000000000000000000224698fc094cf91b992d30ed00000001",
16,
)
.unwrap();
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_add_mod(&mut cs, &a_val, &b_val, &c_val, &m_val, 32, 8);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
println!("Add mod constraint no: {}", cs.num_constraints());
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_add_mod(&mut cs, &a_val, &b_val, &c_val, &m_val, 32, 8);
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
#[test]
fn test_equal() {
type G = pasta_curves::pallas::Point;
// Set the inputs
let a_val = BigInt::from_str_radix("1157233675242885698197099479540877", 10).unwrap();
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_is_equal(&mut cs, &a_val, 32, 8);
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
println!("Equal constraint no: {}", cs.num_constraints());
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let _ = synthesize_is_equal(&mut cs, &a_val, 32, 8);
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
}

+ 4
- 4
src/gadgets/mod.rs

@ -1,5 +1,5 @@
//! This module implements various gadgets necessary for Nova
//! and applications built with Nova.
//! This module implements various gadgets necessary for Nova and applications built with Nova.
pub mod ecc;
pub mod r1cs;
pub mod utils;
pub(crate) mod nonnative;
pub(crate) mod r1cs;
pub(crate) mod utils;

+ 830
- 0
src/gadgets/nonnative/bignat.rs

@ -0,0 +1,830 @@
use super::{
util::{
Bitvector, Num, {f_to_nat, nat_to_f},
},
OptionExt,
};
use bellperson::{ConstraintSystem, LinearCombination, SynthesisError};
use ff::PrimeField;
use num_bigint::BigInt;
use num_traits::cast::ToPrimitive;
use std::borrow::Borrow;
use std::cmp::{max, min};
use std::convert::From;
/// Compute the natural number represented by an array of limbs.
/// The limbs are assumed to be based the `limb_width` power of 2.
pub fn limbs_to_nat<Scalar: PrimeField, B: Borrow<Scalar>, I: DoubleEndedIterator<Item = B>>(
limbs: I,
limb_width: usize,
) -> BigInt {
limbs.rev().fold(BigInt::from(0), |mut acc, limb| {
acc <<= limb_width as u32;
acc += f_to_nat(limb.borrow());
acc
})
}
fn int_with_n_ones(n: usize) -> BigInt {
let mut m = BigInt::from(1);
m <<= n as u32;
m -= 1;
m
}
/// Compute the limbs encoding a natural number.
/// The limbs are assumed to be based the `limb_width` power of 2.
pub fn nat_to_limbs<Scalar: PrimeField>(
nat: &BigInt,
limb_width: usize,
n_limbs: usize,
) -> Result<Vec<Scalar>, SynthesisError> {
let mask = int_with_n_ones(limb_width);
let mut nat = nat.clone();
if nat.bits() as usize <= n_limbs * limb_width {
Ok(
(0..n_limbs)
.map(|_| {
let r = &nat & &mask;
nat >>= limb_width as u32;
nat_to_f(&r).unwrap()
})
.collect(),
)
} else {
eprintln!(
"nat {} does not fit in {} limbs of width {}",
nat, n_limbs, limb_width
);
Err(SynthesisError::Unsatisfiable)
}
}
#[derive(Clone, PartialEq, Eq)]
pub struct BigNatParams {
pub min_bits: usize,
pub max_word: BigInt,
pub limb_width: usize,
pub n_limbs: usize,
}
impl BigNatParams {
pub fn new(limb_width: usize, n_limbs: usize) -> Self {
let mut max_word = BigInt::from(1) << limb_width as u32;
max_word -= 1;
BigNatParams {
max_word,
n_limbs,
limb_width,
min_bits: 0,
}
}
}
/// A representation of a large natural number (a member of {0, 1, 2, ... })
#[derive(Clone)]
pub struct BigNat<Scalar: PrimeField> {
/// The linear combinations which constrain the value of each limb of the number
pub limbs: Vec<LinearCombination<Scalar>>,
/// The witness values for each limb (filled at witness-time)
pub limb_values: Option<Vec<Scalar>>,
/// The value of the whole number (filled at witness-time)
pub value: Option<BigInt>,
/// Parameters
pub params: BigNatParams,
}
impl<Scalar: PrimeField> std::cmp::PartialEq for BigNat<Scalar> {
fn eq(&self, other: &Self) -> bool {
self.value == other.value && self.params == other.params
}
}
impl<Scalar: PrimeField> std::cmp::Eq for BigNat<Scalar> {}
impl<Scalar: PrimeField> From<BigNat<Scalar>> for Polynomial<Scalar> {
fn from(other: BigNat<Scalar>) -> Polynomial<Scalar> {
Polynomial {
coefficients: other.limbs,
values: other.limb_values,
}
}
}
impl<Scalar: PrimeField> BigNat<Scalar> {
/// Allocates a `BigNat` in the circuit with `n_limbs` limbs of width `limb_width` each.
/// If `max_word` is missing, then it is assumed to be `(2 << limb_width) - 1`.
/// The value is provided by a closure returning limb values.
pub fn alloc_from_limbs<CS, F>(
mut cs: CS,
f: F,
max_word: Option<BigInt>,
limb_width: usize,
n_limbs: usize,
) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<Scalar>,
F: FnOnce() -> Result<Vec<Scalar>, SynthesisError>,
{
let values_cell = f();
let mut value = None;
let mut limb_values = None;
let limbs = (0..n_limbs)
.map(|limb_i| {
cs.alloc(
|| format!("limb {}", limb_i),
|| match values_cell {
Ok(ref vs) => {
if vs.len() != n_limbs {
eprintln!("Values do not match stated limb count");
return Err(SynthesisError::Unsatisfiable);
}
if value.is_none() {
value = Some(limbs_to_nat::<Scalar, _, _>(vs.iter(), limb_width));
}
if limb_values.is_none() {
limb_values = Some(vs.clone());
}
Ok(vs[limb_i])
}
// Hack b/c SynthesisError and io::Error don't implement Clone
Err(ref e) => Err(SynthesisError::from(std::io::Error::new(
std::io::ErrorKind::Other,
format!("{}", e),
))),
},
)
.map(|v| LinearCombination::zero() + v)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(Self {
value,
limb_values,
limbs,
params: BigNatParams {
min_bits: 0,
n_limbs,
max_word: max_word.unwrap_or_else(|| int_with_n_ones(limb_width)),
limb_width,
},
})
}
/// Allocates a `BigNat` in the circuit with `n_limbs` limbs of width `limb_width` each.
/// The `max_word` is gauranteed to be `(2 << limb_width) - 1`.
/// The value is provided by a closure returning a natural number.
pub fn alloc_from_nat<CS, F>(
mut cs: CS,
f: F,
limb_width: usize,
n_limbs: usize,
) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<Scalar>,
F: FnOnce() -> Result<BigInt, SynthesisError>,
{
let all_values_cell =
f().and_then(|v| Ok((nat_to_limbs::<Scalar>(&v, limb_width, n_limbs)?, v)));
let mut value = None;
let mut limb_values = Vec::new();
let limbs = (0..n_limbs)
.map(|limb_i| {
cs.alloc(
|| format!("limb {}", limb_i),
|| match all_values_cell {
Ok((ref vs, ref v)) => {
if value.is_none() {
value = Some(v.clone());
}
limb_values.push(vs[limb_i]);
Ok(vs[limb_i])
}
// Hack b/c SynthesisError and io::Error don't implement Clone
Err(ref e) => Err(SynthesisError::from(std::io::Error::new(
std::io::ErrorKind::Other,
format!("{}", e),
))),
},
)
.map(|v| LinearCombination::zero() + v)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(Self {
value,
limb_values: if !limb_values.is_empty() {
Some(limb_values)
} else {
None
},
limbs,
params: BigNatParams::new(limb_width, n_limbs),
})
}
/// Allocates a `BigNat` in the circuit with `n_limbs` limbs of width `limb_width` each.
/// The `max_word` is gauranteed to be `(2 << limb_width) - 1`.
/// The value is provided by an allocated number
pub fn from_num<CS: ConstraintSystem<Scalar>>(
mut cs: CS,
n: Num<Scalar>,
limb_width: usize,
n_limbs: usize,
) -> Result<Self, SynthesisError> {
let bignat = Self::alloc_from_nat(
cs.namespace(|| "bignat"),
|| {
Ok({
n.value
.as_ref()
.map(|n| f_to_nat(n))
.ok_or(SynthesisError::AssignmentMissing)?
})
},
limb_width,
n_limbs,
)?;
// check if bignat equals n
// (1) decompose `bignat` into a bitvector `bv`
let bv = bignat.decompose(cs.namespace(|| "bv"))?;
// (2) recompose bits and check if it equals n
n.is_equal(cs.namespace(|| "n"), &bv)?;
Ok(bignat)
}
pub fn as_limbs<CS: ConstraintSystem<Scalar>>(&self) -> Vec<Num<Scalar>> {
let mut limbs = Vec::new();
for (i, lc) in self.limbs.iter().enumerate() {
limbs.push(Num::new(
self.limb_values.as_ref().map(|vs| vs[i]),
lc.clone(),
));
}
limbs
}
pub fn assert_well_formed<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
) -> Result<(), SynthesisError> {
// swap the option and iterator
let limb_values_split =
(0..self.limbs.len()).map(|i| self.limb_values.as_ref().map(|vs| vs[i]));
for (i, (limb, limb_value)) in self.limbs.iter().zip(limb_values_split).enumerate() {
Num::new(limb_value, limb.clone())
.fits_in_bits(cs.namespace(|| format!("{}", i)), self.params.limb_width)?;
}
Ok(())
}
/// Break `self` up into a bit-vector.
pub fn decompose<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
) -> Result<Bitvector<Scalar>, SynthesisError> {
let limb_values_split =
(0..self.limbs.len()).map(|i| self.limb_values.as_ref().map(|vs| vs[i]));
let bitvectors: Vec<Bitvector<Scalar>> = self
.limbs
.iter()
.zip(limb_values_split)
.enumerate()
.map(|(i, (limb, limb_value))| {
Num::new(limb_value, limb.clone()).decompose(
cs.namespace(|| format!("subdecmop {}", i)),
self.params.limb_width,
)
})
.collect::<Result<Vec<_>, _>>()?;
let mut bits = Vec::new();
let mut values = Vec::new();
let mut allocations = Vec::new();
for bv in bitvectors {
bits.extend(bv.bits);
if let Some(vs) = bv.values {
values.extend(vs)
};
allocations.extend(bv.allocations);
}
let values = if !values.is_empty() {
Some(values)
} else {
None
};
Ok(Bitvector {
bits,
values,
allocations,
})
}
pub fn enforce_limb_width_agreement(
&self,
other: &Self,
location: &str,
) -> Result<usize, SynthesisError> {
if self.params.limb_width == other.params.limb_width {
Ok(self.params.limb_width)
} else {
eprintln!(
"Limb widths {}, {}, do not agree at {}",
self.params.limb_width, other.params.limb_width, location
);
Err(SynthesisError::Unsatisfiable)
}
}
pub fn from_poly(poly: Polynomial<Scalar>, limb_width: usize, max_word: BigInt) -> Self {
Self {
params: BigNatParams {
min_bits: 0,
max_word,
n_limbs: poly.coefficients.len(),
limb_width,
},
limbs: poly.coefficients,
value: poly
.values
.as_ref()
.map(|limb_values| limbs_to_nat::<Scalar, _, _>(limb_values.iter(), limb_width)),
limb_values: poly.values,
}
}
/// Constrain `self` to be equal to `other`, after carrying both.
pub fn equal_when_carried<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.enforce_limb_width_agreement(other, "equal_when_carried")?;
// We'll propegate carries over the first `n` limbs.
let n = min(self.limbs.len(), other.limbs.len());
let target_base = BigInt::from(1u8) << self.params.limb_width as u32;
let mut accumulated_extra = BigInt::from(0usize);
let max_word = std::cmp::max(&self.params.max_word, &other.params.max_word);
let carry_bits = (((max_word.to_f64().unwrap() * 2.0).log2() - self.params.limb_width as f64)
.ceil()
+ 0.1) as usize;
let mut carry_in = Num::new(Some(Scalar::zero()), LinearCombination::zero());
for i in 0..n {
let carry = Num::alloc(cs.namespace(|| format!("carry value {}", i)), || {
Ok(
nat_to_f(
&((f_to_nat(&self.limb_values.grab()?[i])
+ f_to_nat(&carry_in.value.unwrap())
+ max_word
- f_to_nat(&other.limb_values.grab()?[i]))
/ &target_base),
)
.unwrap(),
)
})?;
accumulated_extra += max_word;
cs.enforce(
|| format!("carry {}", i),
|lc| lc,
|lc| lc,
|lc| {
lc + &carry_in.num + &self.limbs[i] - &other.limbs[i]
+ (nat_to_f(max_word).unwrap(), CS::one())
- (nat_to_f(&target_base).unwrap(), &carry.num)
- (
nat_to_f(&(&accumulated_extra % &target_base)).unwrap(),
CS::one(),
)
},
);
accumulated_extra /= &target_base;
if i < n - 1 {
carry.fits_in_bits(cs.namespace(|| format!("carry {} decomp", i)), carry_bits)?;
} else {
cs.enforce(
|| format!("carry {} is out", i),
|lc| lc,
|lc| lc,
|lc| lc + &carry.num - (nat_to_f(&accumulated_extra).unwrap(), CS::one()),
);
}
carry_in = carry;
}
for (i, zero_limb) in self.limbs.iter().enumerate().skip(n) {
cs.enforce(
|| format!("zero self {}", i),
|lc| lc,
|lc| lc,
|lc| lc + zero_limb,
);
}
for (i, zero_limb) in other.limbs.iter().enumerate().skip(n) {
cs.enforce(
|| format!("zero other {}", i),
|lc| lc,
|lc| lc,
|lc| lc + zero_limb,
);
}
Ok(())
}
/// Constrain `self` to be equal to `other`, after carrying both.
/// Uses regrouping internally to take full advantage of the field size and reduce the amount
/// of carrying.
pub fn equal_when_carried_regroup<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.enforce_limb_width_agreement(other, "equal_when_carried_regroup")?;
let max_word = std::cmp::max(&self.params.max_word, &other.params.max_word);
let carry_bits = (((max_word.to_f64().unwrap() * 2.0).log2() - self.params.limb_width as f64)
.ceil()
+ 0.1) as usize;
let limbs_per_group = (Scalar::CAPACITY as usize - carry_bits) / self.params.limb_width;
let self_grouped = self.group_limbs(limbs_per_group);
let other_grouped = other.group_limbs(limbs_per_group);
self_grouped.equal_when_carried(cs.namespace(|| "grouped"), &other_grouped)
}
pub fn add<CS: ConstraintSystem<Scalar>>(
&self,
other: &Self,
) -> Result<BigNat<Scalar>, SynthesisError> {
self.enforce_limb_width_agreement(other, "add")?;
let n_limbs = max(self.params.n_limbs, other.params.n_limbs);
let max_word = &self.params.max_word + &other.params.max_word;
let limbs: Vec<LinearCombination<Scalar>> = (0..n_limbs)
.map(|i| match (self.limbs.get(i), other.limbs.get(i)) {
(Some(a), Some(b)) => a.clone() + b,
(Some(a), None) => a.clone(),
(None, Some(b)) => b.clone(),
(None, None) => unreachable!(),
})
.collect();
let limb_values: Option<Vec<Scalar>> = self.limb_values.as_ref().and_then(|x| {
other.limb_values.as_ref().map(|y| {
(0..n_limbs)
.map(|i| match (x.get(i), y.get(i)) {
(Some(a), Some(b)) => {
let mut t = *a;
t.add_assign(b);
t
}
(Some(a), None) => *a,
(None, Some(a)) => *a,
(None, None) => unreachable!(),
})
.collect()
})
});
let value = self
.value
.as_ref()
.and_then(|x| other.value.as_ref().map(|y| x + y));
Ok(Self {
limb_values,
value,
limbs,
params: BigNatParams {
min_bits: max(self.params.min_bits, other.params.min_bits),
n_limbs,
max_word,
limb_width: self.params.limb_width,
},
})
}
/// Compute a `BigNat` contrained to be equal to `self * other % modulus`.
pub fn mult_mod<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
modulus: &Self,
) -> Result<(BigNat<Scalar>, BigNat<Scalar>), SynthesisError> {
self.enforce_limb_width_agreement(other, "mult_mod")?;
let limb_width = self.params.limb_width;
let quotient_bits = (self.n_bits() + other.n_bits()).saturating_sub(modulus.params.min_bits);
let quotient_limbs = quotient_bits.saturating_sub(1) / limb_width + 1;
let quotient = BigNat::alloc_from_nat(
cs.namespace(|| "quotient"),
|| {
Ok({
let mut x = self.value.grab()?.clone();
x *= other.value.grab()?;
x /= modulus.value.grab()?;
x
})
},
self.params.limb_width,
quotient_limbs,
)?;
quotient.assert_well_formed(cs.namespace(|| "quotient rangecheck"))?;
let remainder = BigNat::alloc_from_nat(
cs.namespace(|| "remainder"),
|| {
Ok({
let mut x = self.value.grab()?.clone();
x *= other.value.grab()?;
x %= modulus.value.grab()?;
x
})
},
self.params.limb_width,
modulus.limbs.len(),
)?;
remainder.assert_well_formed(cs.namespace(|| "remainder rangecheck"))?;
let a_poly = Polynomial::from(self.clone());
let b_poly = Polynomial::from(other.clone());
let mod_poly = Polynomial::from(modulus.clone());
let q_poly = Polynomial::from(quotient.clone());
let r_poly = Polynomial::from(remainder.clone());
// a * b
let left = a_poly.alloc_product(cs.namespace(|| "left"), &b_poly)?;
let right_product = q_poly.alloc_product(cs.namespace(|| "right_product"), &mod_poly)?;
// q * m + r
let right = right_product.sum(&r_poly);
let left_max_word = {
let mut x = BigInt::from(min(self.limbs.len(), other.limbs.len()));
x *= &self.params.max_word;
x *= &other.params.max_word;
x
};
let right_max_word = {
let mut x = BigInt::from(std::cmp::min(quotient.limbs.len(), modulus.limbs.len()));
x *= &quotient.params.max_word;
x *= &modulus.params.max_word;
x += &remainder.params.max_word;
x
};
let left_int = BigNat::from_poly(left, limb_width, left_max_word);
let right_int = BigNat::from_poly(right, limb_width, right_max_word);
left_int.equal_when_carried_regroup(cs.namespace(|| "carry"), &right_int)?;
Ok((quotient, remainder))
}
/// Compute a `BigNat` contrained to be equal to `self * other % modulus`.
pub fn red_mod<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
modulus: &Self,
) -> Result<BigNat<Scalar>, SynthesisError> {
self.enforce_limb_width_agreement(modulus, "red_mod")?;
let limb_width = self.params.limb_width;
let quotient_bits = self.n_bits().saturating_sub(modulus.params.min_bits);
let quotient_limbs = quotient_bits.saturating_sub(1) / limb_width + 1;
let quotient = BigNat::alloc_from_nat(
cs.namespace(|| "quotient"),
|| Ok(self.value.grab()? / modulus.value.grab()?),
self.params.limb_width,
quotient_limbs,
)?;
quotient.assert_well_formed(cs.namespace(|| "quotient rangecheck"))?;
let remainder = BigNat::alloc_from_nat(
cs.namespace(|| "remainder"),
|| Ok(self.value.grab()? % modulus.value.grab()?),
self.params.limb_width,
modulus.limbs.len(),
)?;
remainder.assert_well_formed(cs.namespace(|| "remainder rangecheck"))?;
let mod_poly = Polynomial::from(modulus.clone());
let q_poly = Polynomial::from(quotient.clone());
let r_poly = Polynomial::from(remainder.clone());
// q * m + r
let right_product = q_poly.alloc_product(cs.namespace(|| "right_product"), &mod_poly)?;
let right = right_product.sum(&r_poly);
let right_max_word = {
let mut x = BigInt::from(std::cmp::min(quotient.limbs.len(), modulus.limbs.len()));
x *= &quotient.params.max_word;
x *= &modulus.params.max_word;
x += &remainder.params.max_word;
x
};
let right_int = BigNat::from_poly(right, limb_width, right_max_word);
self.equal_when_carried_regroup(cs.namespace(|| "carry"), &right_int)?;
Ok(remainder)
}
/// Combines limbs into groups.
pub fn group_limbs(&self, limbs_per_group: usize) -> BigNat<Scalar> {
let n_groups = (self.limbs.len() - 1) / limbs_per_group + 1;
let limb_values = self.limb_values.as_ref().map(|vs| {
let mut values: Vec<Scalar> = vec![Scalar::zero(); n_groups];
let mut shift = Scalar::one();
let limb_block = (0..self.params.limb_width).fold(Scalar::one(), |mut l, _| {
l = l.double();
l
});
for (i, v) in vs.iter().enumerate() {
if i % limbs_per_group == 0 {
shift = Scalar::one();
}
let mut a = shift;
a *= v;
values[i / limbs_per_group].add_assign(&a);
shift.mul_assign(&limb_block);
}
values
});
let limbs = {
let mut limbs: Vec<LinearCombination<Scalar>> = vec![LinearCombination::zero(); n_groups];
let mut shift = Scalar::one();
let limb_block = (0..self.params.limb_width).fold(Scalar::one(), |mut l, _| {
l = l.double();
l
});
for (i, limb) in self.limbs.iter().enumerate() {
if i % limbs_per_group == 0 {
shift = Scalar::one();
}
limbs[i / limbs_per_group] =
std::mem::replace(&mut limbs[i / limbs_per_group], LinearCombination::zero())
+ (shift, limb);
shift.mul_assign(&limb_block);
}
limbs
};
let max_word = (0..limbs_per_group).fold(BigInt::from(0u8), |mut acc, i| {
acc.set_bit((i * self.params.limb_width) as u64, true);
acc
}) * &self.params.max_word;
BigNat {
params: BigNatParams {
min_bits: self.params.min_bits,
limb_width: self.params.limb_width * limbs_per_group,
n_limbs: limbs.len(),
max_word,
},
limbs,
limb_values,
value: self.value.clone(),
}
}
pub fn n_bits(&self) -> usize {
assert!(self.params.n_limbs > 0);
self.params.limb_width * (self.params.n_limbs - 1) + self.params.max_word.bits() as usize
}
}
pub struct Polynomial<Scalar: PrimeField> {
pub coefficients: Vec<LinearCombination<Scalar>>,
pub values: Option<Vec<Scalar>>,
}
impl<Scalar: PrimeField> Polynomial<Scalar> {
pub fn alloc_product<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Polynomial<Scalar>, SynthesisError> {
let n_product_coeffs = self.coefficients.len() + other.coefficients.len() - 1;
let values = self.values.as_ref().and_then(|self_vs| {
other.values.as_ref().map(|other_vs| {
let mut values: Vec<Scalar> = std::iter::repeat_with(Scalar::zero)
.take(n_product_coeffs)
.collect();
for (self_i, self_v) in self_vs.iter().enumerate() {
for (other_i, other_v) in other_vs.iter().enumerate() {
let mut v = *self_v;
v.mul_assign(other_v);
values[self_i + other_i].add_assign(&v);
}
}
values
})
});
let coefficients = (0..n_product_coeffs)
.map(|i| {
Ok(
LinearCombination::zero()
+ cs.alloc(|| format!("prod {}", i), || Ok(values.grab()?[i]))?,
)
})
.collect::<Result<Vec<LinearCombination<Scalar>>, SynthesisError>>()?;
let product = Polynomial {
coefficients,
values,
};
let one = Scalar::one();
let mut x = Scalar::zero();
for _ in 1..(n_product_coeffs + 1) {
x.add_assign(&one);
cs.enforce(
|| format!("pointwise product @ {:?}", x),
|lc| {
let mut i = Scalar::one();
self.coefficients.iter().fold(lc, |lc, c| {
let r = lc + (i, c);
i.mul_assign(&x);
r
})
},
|lc| {
let mut i = Scalar::one();
other.coefficients.iter().fold(lc, |lc, c| {
let r = lc + (i, c);
i.mul_assign(&x);
r
})
},
|lc| {
let mut i = Scalar::one();
product.coefficients.iter().fold(lc, |lc, c| {
let r = lc + (i, c);
i.mul_assign(&x);
r
})
},
)
}
Ok(product)
}
pub fn sum(&self, other: &Self) -> Self {
let n_coeffs = max(self.coefficients.len(), other.coefficients.len());
let values = self.values.as_ref().and_then(|self_vs| {
other.values.as_ref().map(|other_vs| {
(0..n_coeffs)
.map(|i| {
let mut s = Scalar::zero();
if i < self_vs.len() {
s.add_assign(&self_vs[i]);
}
if i < other_vs.len() {
s.add_assign(&other_vs[i]);
}
s
})
.collect()
})
});
let coefficients = (0..n_coeffs)
.map(|i| {
let mut lc = LinearCombination::zero();
if i < self.coefficients.len() {
lc = lc + &self.coefficients[i];
}
if i < other.coefficients.len() {
lc = lc + &other.coefficients[i];
}
lc
})
.collect();
Polynomial {
coefficients,
values,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use bellperson::Circuit;
pub struct PolynomialMultiplier<Scalar: PrimeField> {
pub a: Vec<Scalar>,
pub b: Vec<Scalar>,
}
impl<Scalar: PrimeField> Circuit<Scalar> for PolynomialMultiplier<Scalar> {
fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
let a = Polynomial {
coefficients: self
.a
.iter()
.enumerate()
.map(|(i, x)| {
Ok(LinearCombination::zero() + cs.alloc(|| format!("coeff_a {}", i), || Ok(*x))?)
})
.collect::<Result<Vec<LinearCombination<Scalar>>, SynthesisError>>()?,
values: Some(self.a),
};
let b = Polynomial {
coefficients: self
.b
.iter()
.enumerate()
.map(|(i, x)| {
Ok(LinearCombination::zero() + cs.alloc(|| format!("coeff_b {}", i), || Ok(*x))?)
})
.collect::<Result<Vec<LinearCombination<Scalar>>, SynthesisError>>()?,
values: Some(self.b),
};
let _prod = a.alloc_product(cs.namespace(|| "product"), &b)?;
Ok(())
}
}
}

+ 39
- 0
src/gadgets/nonnative/mod.rs

@ -0,0 +1,39 @@
//! This module implements various gadgets necessary for doing non-native arithmetic
//! Code in this module is adapted from [bellman-bignat](https://github.com/alex-ozdemir/bellman-bignat), which is licenced under MIT
use bellperson::SynthesisError;
use ff::PrimeField;
trait OptionExt<T> {
fn grab(&self) -> Result<&T, SynthesisError>;
fn grab_mut(&mut self) -> Result<&mut T, SynthesisError>;
}
impl<T> OptionExt<T> for Option<T> {
fn grab(&self) -> Result<&T, SynthesisError> {
self.as_ref().ok_or(SynthesisError::AssignmentMissing)
}
fn grab_mut(&mut self) -> Result<&mut T, SynthesisError> {
self.as_mut().ok_or(SynthesisError::AssignmentMissing)
}
}
trait BitAccess {
fn get_bit(&self, i: usize) -> Option<bool>;
}
impl<Scalar: PrimeField> BitAccess for Scalar {
fn get_bit(&self, i: usize) -> Option<bool> {
if i as u32 >= Scalar::NUM_BITS {
return None;
}
let (byte_pos, bit_pos) = (i / 8, i % 8);
let byte = self.to_repr().as_ref()[byte_pos];
let bit = byte >> bit_pos & 1;
Some(bit == 1)
}
}
pub mod bignat;
pub mod util;

+ 261
- 0
src/gadgets/nonnative/util.rs

@ -0,0 +1,261 @@
use super::{BitAccess, OptionExt};
use bellperson::{
gadgets::num::AllocatedNum,
{ConstraintSystem, LinearCombination, SynthesisError, Variable},
};
use byteorder::WriteBytesExt;
use ff::PrimeField;
use num_bigint::{BigInt, Sign};
use std::convert::From;
use std::io::{self, Write};
#[derive(Clone)]
/// A representation of a bit
pub struct Bit<Scalar: PrimeField> {
/// The linear combination which constrain the value of the bit
pub bit: LinearCombination<Scalar>,
/// The value of the bit (filled at witness-time)
pub value: Option<bool>,
}
#[derive(Clone)]
/// A representation of a bit-vector
pub struct Bitvector<Scalar: PrimeField> {
/// The linear combination which constrain the values of the bits
pub bits: Vec<LinearCombination<Scalar>>,
/// The value of the bits (filled at witness-time)
pub values: Option<Vec<bool>>,
/// Allocated bit variables
pub allocations: Vec<Bit<Scalar>>,
}
impl<Scalar: PrimeField> Bit<Scalar> {
/// Allocate a variable in the constraint system which can only be a
/// boolean value.
pub fn alloc<CS>(mut cs: CS, value: Option<bool>) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<Scalar>,
{
let var = cs.alloc(
|| "boolean",
|| {
if *value.grab()? {
Ok(Scalar::one())
} else {
Ok(Scalar::zero())
}
},
)?;
// Constrain: (1 - a) * a = 0
// This constrains a to be either 0 or 1.
cs.enforce(
|| "boolean constraint",
|lc| lc + CS::one() - var,
|lc| lc + var,
|lc| lc,
);
Ok(Self {
bit: LinearCombination::zero() + var,
value,
})
}
}
pub struct Num<Scalar: PrimeField> {
pub num: LinearCombination<Scalar>,
pub value: Option<Scalar>,
}
impl<Scalar: PrimeField> Num<Scalar> {
pub fn new(value: Option<Scalar>, num: LinearCombination<Scalar>) -> Self {
Self { value, num }
}
pub fn alloc<CS, F>(mut cs: CS, value: F) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<Scalar>,
F: FnOnce() -> Result<Scalar, SynthesisError>,
{
let mut new_value = None;
let var = cs.alloc(
|| "num",
|| {
let tmp = value()?;
new_value = Some(tmp);
Ok(tmp)
},
)?;
Ok(Num {
value: new_value,
num: LinearCombination::zero() + var,
})
}
pub fn fits_in_bits<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
n_bits: usize,
) -> Result<(), SynthesisError> {
let v = self.value;
// Allocate all but the first bit.
let bits: Vec<Variable> = (1..n_bits)
.map(|i| {
cs.alloc(
|| format!("bit {}", i),
|| {
let r = if *v.grab()?.get_bit(i).grab()? {
Scalar::one()
} else {
Scalar::zero()
};
Ok(r)
},
)
})
.collect::<Result<_, _>>()?;
for (i, v) in bits.iter().enumerate() {
cs.enforce(
|| format!("{} is bit", i),
|lc| lc + *v,
|lc| lc + CS::one() - *v,
|lc| lc,
)
}
// Last bit
cs.enforce(
|| "last bit",
|mut lc| {
let mut f = Scalar::one();
lc = lc + &self.num;
for v in bits.iter() {
f = f.double();
lc = lc - (f, *v);
}
lc
},
|mut lc| {
lc = lc + CS::one();
let mut f = Scalar::one();
lc = lc - &self.num;
for v in bits.iter() {
f = f.double();
lc = lc + (f, *v);
}
lc
},
|lc| lc,
);
Ok(())
}
/// Computes the natural number represented by an array of bits.
/// Checks if the natural number equals `self`
pub fn is_equal<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Bitvector<Scalar>,
) -> Result<(), SynthesisError> {
let allocations = other.allocations.clone();
let mut f = Scalar::one();
let sum = allocations
.iter()
.fold(LinearCombination::zero(), |lc, bit| {
let l = lc + (f, &bit.bit);
f = f.double();
l
});
let sum_lc = LinearCombination::zero() + &self.num - &sum;
cs.enforce(|| "sum", |lc| lc + &sum_lc, |lc| lc + CS::one(), |lc| lc);
Ok(())
}
/// Compute the natural number represented by an array of limbs.
/// The limbs are assumed to be based the `limb_width` power of 2.
/// Low-index bits are low-order
pub fn decompose<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
n_bits: usize,
) -> Result<Bitvector<Scalar>, SynthesisError> {
let values: Option<Vec<bool>> = self.value.as_ref().map(|v| {
let num = *v;
(0..n_bits).map(|i| num.get_bit(i).unwrap()).collect()
});
let allocations: Vec<Bit<Scalar>> = (0..n_bits)
.map(|bit_i| {
Bit::alloc(
cs.namespace(|| format!("bit{}", bit_i)),
values.as_ref().map(|vs| vs[bit_i]),
)
})
.collect::<Result<Vec<_>, _>>()?;
let mut f = Scalar::one();
let sum = allocations
.iter()
.fold(LinearCombination::zero(), |lc, bit| {
let l = lc + (f, &bit.bit);
f = f.double();
l
});
let sum_lc = LinearCombination::zero() + &self.num - &sum;
cs.enforce(|| "sum", |lc| lc + &sum_lc, |lc| lc + CS::one(), |lc| lc);
let bits: Vec<LinearCombination<Scalar>> = allocations
.clone()
.into_iter()
.map(|a| LinearCombination::zero() + &a.bit)
.collect();
Ok(Bitvector {
allocations,
values,
bits,
})
}
pub fn as_allocated_num<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
) -> Result<AllocatedNum<Scalar>, SynthesisError> {
let new = AllocatedNum::alloc(cs.namespace(|| "alloc"), || Ok(*self.value.grab()?))?;
cs.enforce(
|| "eq",
|lc| lc,
|lc| lc,
|lc| lc + new.get_variable() - &self.num,
);
Ok(new)
}
}
impl<Scalar: PrimeField> From<AllocatedNum<Scalar>> for Num<Scalar> {
fn from(a: AllocatedNum<Scalar>) -> Self {
Self::new(a.get_value(), LinearCombination::zero() + a.get_variable())
}
}
fn write_be<F: PrimeField, W: Write>(f: &F, mut writer: W) -> io::Result<()> {
for digit in f.to_repr().as_ref().iter().rev() {
writer.write_u8(*digit)?;
}
Ok(())
}
/// Convert a field element to a natural number
pub fn f_to_nat<Scalar: PrimeField>(f: &Scalar) -> BigInt {
let mut s = Vec::new();
write_be(f, &mut s).unwrap(); // f.to_repr().write_be(&mut s).unwrap();
BigInt::from_bytes_le(Sign::Plus, f.to_repr().as_ref())
}
/// Convert a natural number to a field element.
/// Returns `None` if the number is too big for the field.
pub fn nat_to_f<Scalar: PrimeField>(n: &BigInt) -> Option<Scalar> {
Scalar::from_str_vartime(&format!("{}", n))
}

+ 6
- 8
src/gadgets/r1cs.rs

@ -1,4 +1,8 @@
//! This module implements various gadgets necessary for folding R1CS types.
use super::nonnative::{
bignat::BigNat,
util::{f_to_nat, Num},
};
use crate::{
constants::{NUM_CHALLENGE_BITS, NUM_FE_FOR_RO},
gadgets::{
@ -15,10 +19,6 @@ use bellperson::{
gadgets::{boolean::Boolean, num::AllocatedNum, Assignment},
ConstraintSystem, SynthesisError,
};
use bellperson_nonnative::{
mp::bignat::BigNat,
util::{convert::f_to_nat, num::Num},
};
use ff::Field;
/// An Allocated R1CS Instance
@ -225,8 +225,7 @@ where
.iter()
.enumerate()
.map(|(i, limb)| {
limb
.as_sapling_allocated_num(cs.namespace(|| format!("convert limb {} of X_r[0] to num", i)))
limb.as_allocated_num(cs.namespace(|| format!("convert limb {} of X_r[0] to num", i)))
})
.collect::<Result<Vec<AllocatedNum<G::Base>>, _>>()?;
@ -242,8 +241,7 @@ where
.iter()
.enumerate()
.map(|(i, limb)| {
limb
.as_sapling_allocated_num(cs.namespace(|| format!("convert limb {} of X_r[1] to num", i)))
limb.as_allocated_num(cs.namespace(|| format!("convert limb {} of X_r[1] to num", i)))
})
.collect::<Result<Vec<AllocatedNum<G::Base>>, _>>()?;

+ 1
- 1
src/gadgets/utils.rs

@ -1,4 +1,5 @@
//! This module implements various low-level gadgets
use super::nonnative::bignat::{nat_to_limbs, BigNat};
use crate::traits::Group;
use bellperson::{
gadgets::{
@ -8,7 +9,6 @@ use bellperson::{
},
ConstraintSystem, LinearCombination, SynthesisError,
};
use bellperson_nonnative::mp::bignat::{nat_to_limbs, BigNat};
use ff::{Field, PrimeField, PrimeFieldBits};
use num_bigint::BigInt;

+ 1
- 1
src/r1cs.rs

@ -1,5 +1,6 @@
//! This module defines R1CS related types and a folding scheme for Relaxed R1CS
#![allow(clippy::type_complexity)]
use super::gadgets::nonnative::{bignat::nat_to_limbs, util::f_to_nat};
use super::{
commitments::{CommitGens, CommitTrait, Commitment},
constants::{BN_LIMB_WIDTH, BN_N_LIMBS, NUM_HASH_BITS},
@ -7,7 +8,6 @@ use super::{
gadgets::utils::scalar_as_base,
traits::{AbsorbInROTrait, AppendToTranscriptTrait, Group, ROTrait},
};
use bellperson_nonnative::{mp::bignat::nat_to_limbs, util::convert::f_to_nat};
use core::cmp::max;
use ff::{Field, PrimeField};
use flate2::{write::ZlibEncoder, Compression};

Loading…
Cancel
Save