diff --git a/Cargo.toml b/Cargo.toml index 2c186a8..d48b839 100644 --- a/Cargo.toml +++ b/Cargo.toml @@ -1,6 +1,6 @@ [package] name = "nova-snark" -version = "0.19.1" +version = "0.20.0" authors = ["Srinath Setty "] edition = "2021" description = "Recursive zkSNARKs without trusted setup" diff --git a/benches/compressed-snark.rs b/benches/compressed-snark.rs index dbde389..595bb34 100644 --- a/benches/compressed-snark.rs +++ b/benches/compressed-snark.rs @@ -17,10 +17,8 @@ type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; type EE1 = nova_snark::provider::ipa_pc::EvaluationEngine; type EE2 = nova_snark::provider::ipa_pc::EvaluationEngine; -type CC1 = nova_snark::spartan::spark::TrivialCompComputationEngine; -type CC2 = nova_snark::spartan::spark::TrivialCompComputationEngine; -type S1 = nova_snark::spartan::RelaxedR1CSSNARK; -type S2 = nova_snark::spartan::RelaxedR1CSSNARK; +type S1 = nova_snark::spartan::RelaxedR1CSSNARK; +type S2 = nova_snark::spartan::RelaxedR1CSSNARK; type C1 = NonTrivialTestCircuit<::Scalar>; type C2 = TrivialTestCircuit<::Scalar>; diff --git a/examples/minroot.rs b/examples/minroot.rs index 233c6f8..52162a4 100644 --- a/examples/minroot.rs +++ b/examples/minroot.rs @@ -261,10 +261,8 @@ fn main() { let start = Instant::now(); type EE1 = nova_snark::provider::ipa_pc::EvaluationEngine; type EE2 = nova_snark::provider::ipa_pc::EvaluationEngine; - type CC1 = nova_snark::spartan::spark::TrivialCompComputationEngine; - type CC2 = nova_snark::spartan::spark::TrivialCompComputationEngine; - type S1 = nova_snark::spartan::RelaxedR1CSSNARK; - type S2 = nova_snark::spartan::RelaxedR1CSSNARK; + type S1 = nova_snark::spartan::RelaxedR1CSSNARK; + type S2 = nova_snark::spartan::RelaxedR1CSSNARK; let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark); println!( diff --git a/src/errors.rs b/src/errors.rs index e925f5b..3a2eac2 100644 --- a/src/errors.rs +++ b/src/errors.rs @@ -50,4 +50,7 @@ pub enum NovaError { /// returned when the product proof check fails #[error("InvalidProductProof")] InvalidProductProof, + /// returned when the consistency with public IO and assignment used fails + #[error("IncorrectWitness")] + IncorrectWitness, } diff --git a/src/lib.rs b/src/lib.rs index 171f2f8..4d86f0e 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -788,10 +788,8 @@ mod tests { type G2 = pasta_curves::vesta::Point; type EE1 = provider::ipa_pc::EvaluationEngine; type EE2 = provider::ipa_pc::EvaluationEngine; - type CC1 = spartan::spark::TrivialCompComputationEngine; - type CC2 = spartan::spark::TrivialCompComputationEngine; - type S1 = spartan::RelaxedR1CSSNARK; - type S2 = spartan::RelaxedR1CSSNARK; + type S1 = spartan::RelaxedR1CSSNARK; + type S2 = spartan::RelaxedR1CSSNARK; use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError}; use core::marker::PhantomData; use ff::PrimeField; @@ -1095,10 +1093,8 @@ mod tests { assert_eq!(zn_secondary, vec![::Scalar::from(2460515u64)]); // run the compressed snark with Spark compiler - type CC1Prime = spartan::spark::SparkEngine; - type CC2Prime = spartan::spark::SparkEngine; - type S1Prime = spartan::RelaxedR1CSSNARK; - type S2Prime = spartan::RelaxedR1CSSNARK; + type S1Prime = spartan::pp::RelaxedR1CSSNARK; + type S2Prime = spartan::pp::RelaxedR1CSSNARK; // produce the prover and verifier keys for compressed snark let (pk, vk) = CompressedSNARK::<_, _, _, _, S1Prime, S2Prime>::setup(&pp).unwrap(); diff --git a/src/r1cs.rs b/src/r1cs.rs index 7e8d12c..81a1af8 100644 --- a/src/r1cs.rs +++ b/src/r1cs.rs @@ -75,8 +75,8 @@ impl R1CS { pub fn commitment_key(S: &R1CSShape) -> CommitmentKey { let num_cons = S.num_cons; let num_vars = S.num_vars; - let num_nz = max(max(S.A.len(), S.B.len()), S.C.len()); - G::CE::setup(b"ck", max(max(num_cons, num_vars), num_nz)) + let total_nz = S.A.len() + S.B.len() + S.C.len(); + G::CE::setup(b"ck", max(max(num_cons, num_vars), total_nz)) } } diff --git a/src/spartan/mod.rs b/src/spartan/mod.rs index 18fcde8..2e0de4e 100644 --- a/src/spartan/mod.rs +++ b/src/spartan/mod.rs @@ -2,7 +2,7 @@ //! over the polynomial commitment and evaluation argument (i.e., a PCS) mod math; pub(crate) mod polynomial; -pub mod spark; +pub mod pp; mod sumcheck; use crate::{ @@ -10,7 +10,6 @@ use crate::{ r1cs::{R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness}, traits::{ evaluation::EvaluationEngineTrait, snark::RelaxedR1CSSNARKTrait, Group, TranscriptEngineTrait, - TranscriptReprTrait, }, Commitment, CommitmentKey, }; @@ -22,7 +21,6 @@ use serde::{Deserialize, Serialize}; use sumcheck::SumcheckProof; /// A type that holds a witness to a polynomial evaluation instance -#[allow(dead_code)] pub struct PolyEvalWitness { p: Vec, // polynomial } @@ -56,7 +54,6 @@ impl PolyEvalWitness { } /// A type that holds a polynomial evaluation instance -#[allow(dead_code)] pub struct PolyEvalInstance { c: Commitment, // commitment to the polynomial x: Vec, // evaluation point @@ -80,79 +77,20 @@ impl PolyEvalInstance { } } -/// A trait that defines the behavior of a computation commitment engine -pub trait CompCommitmentEngineTrait { - /// A type that holds opening hint - type Decommitment: Clone + Send + Sync + Serialize + for<'de> Deserialize<'de>; - - /// A type that holds a commitment - type Commitment: Clone - + Send - + Sync - + TranscriptReprTrait - + Serialize - + for<'de> Deserialize<'de>; - - /// A type that holds an evaluation argument - type EvaluationArgument: Send + Sync + Serialize + for<'de> Deserialize<'de>; - - /// commits to R1CS matrices - fn commit( - ck: &CommitmentKey, - S: &R1CSShape, - ) -> Result<(Self::Commitment, Self::Decommitment), NovaError>; - - /// proves an evaluation of R1CS matrices viewed as polynomials - fn prove( - ck: &CommitmentKey, - S: &R1CSShape, - decomm: &Self::Decommitment, - comm: &Self::Commitment, - r: &(&[G::Scalar], &[G::Scalar]), - transcript: &mut G::TE, - ) -> Result< - ( - Self::EvaluationArgument, - Vec<(PolyEvalWitness, PolyEvalInstance)>, - ), - NovaError, - >; - - /// verifies an evaluation of R1CS matrices viewed as polynomials and returns verified evaluations - fn verify( - comm: &Self::Commitment, - r: &(&[G::Scalar], &[G::Scalar]), - arg: &Self::EvaluationArgument, - transcript: &mut G::TE, - ) -> Result<(G::Scalar, G::Scalar, G::Scalar, Vec>), NovaError>; -} - /// A type that represents the prover's key #[derive(Serialize, Deserialize)] #[serde(bound = "")] -pub struct ProverKey< - G: Group, - EE: EvaluationEngineTrait, - CC: CompCommitmentEngineTrait, -> { +pub struct ProverKey> { pk_ee: EE::ProverKey, S: R1CSShape, - decomm: CC::Decommitment, - comm: CC::Commitment, } /// A type that represents the verifier's key #[derive(Serialize, Deserialize)] #[serde(bound = "")] -pub struct VerifierKey< - G: Group, - EE: EvaluationEngineTrait, - CC: CompCommitmentEngineTrait, -> { - num_cons: usize, - num_vars: usize, +pub struct VerifierKey> { vk_ee: EE::VerifierKey, - comm: CC::Commitment, + S: R1CSShape, } /// A succinct proof of knowledge of a witness to a relaxed R1CS instance @@ -160,27 +98,22 @@ pub struct VerifierKey< /// the commitment to a vector viewed as a polynomial commitment #[derive(Serialize, Deserialize)] #[serde(bound = "")] -pub struct RelaxedR1CSSNARK< - G: Group, - EE: EvaluationEngineTrait, - CC: CompCommitmentEngineTrait, -> { +pub struct RelaxedR1CSSNARK> { sc_proof_outer: SumcheckProof, claims_outer: (G::Scalar, G::Scalar, G::Scalar), eval_E: G::Scalar, sc_proof_inner: SumcheckProof, eval_W: G::Scalar, - eval_arg_cc: CC::EvaluationArgument, sc_proof_batch: SumcheckProof, evals_batch: Vec, eval_arg: EE::EvaluationArgument, } -impl, CC: CompCommitmentEngineTrait> - RelaxedR1CSSNARKTrait for RelaxedR1CSSNARK +impl> RelaxedR1CSSNARKTrait + for RelaxedR1CSSNARK { - type ProverKey = ProverKey; - type VerifierKey = VerifierKey; + type ProverKey = ProverKey; + type VerifierKey = VerifierKey; fn setup( ck: &CommitmentKey, @@ -190,21 +123,12 @@ impl, CC: CompCommitmentEngin let S = S.pad(); - let (comm, decomm) = CC::commit(ck, &S)?; - let vk = VerifierKey { - num_cons: S.num_cons, - num_vars: S.num_vars, vk_ee, - comm: comm.clone(), + S: S.clone(), }; - let pk = ProverKey { - pk_ee, - S, - comm, - decomm, - }; + let pk = ProverKey { pk_ee, S }; Ok((pk, vk)) } @@ -225,8 +149,8 @@ impl, CC: CompCommitmentEngin assert_eq!(pk.S.num_io.next_power_of_two(), pk.S.num_io); assert!(pk.S.num_io < pk.S.num_vars); - // append the commitment to R1CS matrices and the RelaxedR1CSInstance to the transcript - transcript.absorb(b"C", &pk.comm); + // append the digest of R1CS matrices and the RelaxedR1CSInstance to the transcript + transcript.absorb(b"S", &pk.S); transcript.absorb(b"U", U); // compute the full satisfying assignment by concatenating W.W, U.u, and U.X @@ -353,17 +277,8 @@ impl, CC: CompCommitmentEngin &mut transcript, )?; - // we now prove evaluations of R1CS matrices at (r_x, r_y) - let (eval_arg_cc, mut w_u_vec) = CC::prove( - ck, - &pk.S, - &pk.decomm, - &pk.comm, - &(&r_x, &r_y), - &mut transcript, - )?; - // add additional claims about W and E polynomials to the list from CC + let mut w_u_vec = Vec::new(); let eval_W = MultilinearPolynomial::evaluate_with(&W.W, &r_y[1..]); w_u_vec.push(( PolyEvalWitness { p: W.W.clone() }, @@ -475,7 +390,6 @@ impl, CC: CompCommitmentEngin eval_E, sc_proof_inner, eval_W, - eval_arg_cc, sc_proof_batch, evals_batch: claims_batch_left, eval_arg, @@ -486,13 +400,13 @@ impl, CC: CompCommitmentEngin fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance) -> Result<(), NovaError> { let mut transcript = G::TE::new(b"RelaxedR1CSSNARK"); - // append the commitment to R1CS matrices and the RelaxedR1CSInstance to the transcript - transcript.absorb(b"C", &vk.comm); + // append the digest of R1CS matrices and the RelaxedR1CSInstance to the transcript + transcript.absorb(b"S", &vk.S); transcript.absorb(b"U", U); let (num_rounds_x, num_rounds_y) = ( - (vk.num_cons as f64).log2() as usize, - ((vk.num_vars as f64).log2() as usize + 1), + (vk.S.num_cons as f64).log2() as usize, + ((vk.S.num_vars as f64).log2() as usize + 1), ); // outer sum-check @@ -546,32 +460,60 @@ impl, CC: CompCommitmentEngin .map(|i| (i + 1, U.X[i])) .collect::>(), ); - SparsePolynomial::new((vk.num_vars as f64).log2() as usize, poly_X).evaluate(&r_y[1..]) + SparsePolynomial::new((vk.S.num_vars as f64).log2() as usize, poly_X).evaluate(&r_y[1..]) }; (G::Scalar::one() - r_y[0]) * self.eval_W + r_y[0] * eval_X }; - // verify evaluation argument to retrieve evaluations of R1CS matrices - let (eval_A, eval_B, eval_C, mut u_vec) = - CC::verify(&vk.comm, &(&r_x, &r_y), &self.eval_arg_cc, &mut transcript)?; + // compute evaluations of R1CS matrices + let multi_evaluate = |M_vec: &[&[(usize, usize, G::Scalar)]], + r_x: &[G::Scalar], + r_y: &[G::Scalar]| + -> Vec { + let evaluate_with_table = + |M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar { + (0..M.len()) + .collect::>() + .par_iter() + .map(|&i| { + let (row, col, val) = M[i]; + T_x[row] * T_y[col] * val + }) + .reduce(G::Scalar::zero, |acc, x| acc + x) + }; + + let (T_x, T_y) = rayon::join( + || EqPolynomial::new(r_x.to_vec()).evals(), + || EqPolynomial::new(r_y.to_vec()).evals(), + ); + + (0..M_vec.len()) + .collect::>() + .par_iter() + .map(|&i| evaluate_with_table(M_vec[i], &T_x, &T_y)) + .collect() + }; + + let evals = multi_evaluate(&[&vk.S.A, &vk.S.B, &vk.S.C], &r_x, &r_y); - let claim_inner_final_expected = (eval_A + r * eval_B + r * r * eval_C) * eval_Z; + let claim_inner_final_expected = (evals[0] + r * evals[1] + r * r * evals[2]) * eval_Z; if claim_inner_final != claim_inner_final_expected { return Err(NovaError::InvalidSumcheckProof); } - // add additional claims about W and E polynomials to the list from CC - u_vec.push(PolyEvalInstance { - c: U.comm_W, - x: r_y[1..].to_vec(), - e: self.eval_W, - }); - - u_vec.push(PolyEvalInstance { - c: U.comm_E, - x: r_x, - e: self.eval_E, - }); + // add claims about W and E polynomials + let u_vec: Vec> = vec![ + PolyEvalInstance { + c: U.comm_W, + x: r_y[1..].to_vec(), + e: self.eval_W, + }, + PolyEvalInstance { + c: U.comm_E, + x: r_x, + e: self.eval_E, + }, + ]; let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points diff --git a/src/spartan/polynomial.rs b/src/spartan/polynomial.rs index 2486ece..f0b8c65 100644 --- a/src/spartan/polynomial.rs +++ b/src/spartan/polynomial.rs @@ -107,14 +107,6 @@ impl MultilinearPolynomial { .map(|(a, b)| a * b) .reduce(Scalar::zero, |x, y| x + y) } - - pub fn split(&self, idx: usize) -> (Self, Self) { - assert!(idx < self.len()); - ( - Self::new(self.Z[..idx].to_vec()), - Self::new(self.Z[idx..2 * idx].to_vec()), - ) - } } impl Index for MultilinearPolynomial { @@ -149,7 +141,7 @@ impl SparsePolynomial { chi_i } - // Takes O(n log n). TODO: do this in O(n) where n is the number of entries in Z + // Takes O(n log n) pub fn evaluate(&self, r: &[Scalar]) -> Scalar { assert_eq!(self.num_vars, r.len()); diff --git a/src/spartan/pp/mod.rs b/src/spartan/pp/mod.rs new file mode 100644 index 0000000..7710b35 --- /dev/null +++ b/src/spartan/pp/mod.rs @@ -0,0 +1,1317 @@ +//! This module implements RelaxedR1CSSNARK traits using a spark-based approach to prove evaluations of +//! sparse multilinear polynomials involved in Spartan's sum-check protocol, thereby providing a preprocessing SNARK +use crate::{ + errors::NovaError, + r1cs::{R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness}, + spartan::{ + math::Math, + polynomial::{EqPolynomial, MultilinearPolynomial, SparsePolynomial}, + sumcheck::SumcheckProof, + PolyEvalInstance, PolyEvalWitness, + }, + traits::{ + commitment::CommitmentEngineTrait, evaluation::EvaluationEngineTrait, + snark::RelaxedR1CSSNARKTrait, Group, TranscriptEngineTrait, TranscriptReprTrait, + }, + Commitment, CommitmentKey, +}; +use core::cmp::max; +use ff::Field; +use itertools::concat; +use rayon::prelude::*; +use serde::{Deserialize, Serialize}; + +mod product; + +use product::{IdentityPolynomial, ProductArgument}; + +/// A type that holds R1CSShape in a form amenable to memory checking +#[derive(Clone, Serialize, Deserialize)] +#[serde(bound = "")] +pub struct R1CSShapeSparkRepr { + N: usize, // size of the vectors + + // dense representation + row: Vec, + col: Vec, + val_A: Vec, + val_B: Vec, + val_C: Vec, + + // timestamp polynomials + row_read_ts: Vec, + row_audit_ts: Vec, + col_read_ts: Vec, + col_audit_ts: Vec, +} + +/// A type that holds a commitment to a sparse polynomial +#[derive(Clone, Serialize, Deserialize)] +#[serde(bound = "")] +pub struct R1CSShapeSparkCommitment { + N: usize, // size of each vector + + // commitments to the dense representation + comm_row: Commitment, + comm_col: Commitment, + comm_val_A: Commitment, + comm_val_B: Commitment, + comm_val_C: Commitment, + + // commitments to the timestamp polynomials + comm_row_read_ts: Commitment, + comm_row_audit_ts: Commitment, + comm_col_read_ts: Commitment, + comm_col_audit_ts: Commitment, +} + +impl TranscriptReprTrait for R1CSShapeSparkCommitment { + fn to_transcript_bytes(&self) -> Vec { + [ + self.comm_row, + self.comm_col, + self.comm_val_A, + self.comm_val_B, + self.comm_val_C, + self.comm_row_read_ts, + self.comm_row_audit_ts, + self.comm_col_read_ts, + self.comm_col_audit_ts, + ] + .as_slice() + .to_transcript_bytes() + } +} + +impl R1CSShapeSparkRepr { + /// represents R1CSShape in a Spark-friendly format amenable to memory checking + pub fn new(S: &R1CSShape) -> R1CSShapeSparkRepr { + let N = { + let total_nz = S.A.len() + S.B.len() + S.C.len(); + max(total_nz, max(2 * S.num_vars, S.num_cons)).next_power_of_two() + }; + + let row = { + let mut r = S + .A + .iter() + .chain(S.B.iter()) + .chain(S.C.iter()) + .map(|(r, _, _)| *r) + .collect::>(); + r.resize(N, 0usize); + r + }; + + let col = { + let mut c = S + .A + .iter() + .chain(S.B.iter()) + .chain(S.C.iter()) + .map(|(_, c, _)| *c) + .collect::>(); + c.resize(N, 0usize); + c + }; + + let val_A = { + let mut val = S.A.iter().map(|(_, _, v)| *v).collect::>(); + val.resize(N, G::Scalar::zero()); + val + }; + + let val_B = { + // prepend zeros + let mut val = vec![G::Scalar::zero(); S.A.len()]; + val.extend(S.B.iter().map(|(_, _, v)| *v).collect::>()); + // append zeros + val.resize(N, G::Scalar::zero()); + val + }; + + let val_C = { + // prepend zeros + let mut val = vec![G::Scalar::zero(); S.A.len() + S.B.len()]; + val.extend(S.C.iter().map(|(_, _, v)| *v).collect::>()); + // append zeros + val.resize(N, G::Scalar::zero()); + val + }; + + // timestamp calculation routine + let timestamp_calc = + |num_ops: usize, num_cells: usize, addr_trace: &[usize]| -> (Vec, Vec) { + let mut read_ts = vec![0usize; num_ops]; + let mut audit_ts = vec![0usize; num_cells]; + + assert!(num_ops >= addr_trace.len()); + for i in 0..addr_trace.len() { + let addr = addr_trace[i]; + assert!(addr < num_cells); + let r_ts = audit_ts[addr]; + read_ts[i] = r_ts; + + let w_ts = r_ts + 1; + audit_ts[addr] = w_ts; + } + (read_ts, audit_ts) + }; + + // timestamp polynomials for row + let (row_read_ts, row_audit_ts) = timestamp_calc(N, N, &row); + let (col_read_ts, col_audit_ts) = timestamp_calc(N, N, &col); + + // a routine to turn a vector of usize into a vector scalars + let to_vec_scalar = |v: &[usize]| -> Vec { + (0..v.len()) + .map(|i| G::Scalar::from(v[i] as u64)) + .collect::>() + }; + + R1CSShapeSparkRepr { + N, + + // dense representation + row: to_vec_scalar(&row), + col: to_vec_scalar(&col), + val_A, + val_B, + val_C, + + // timestamp polynomials + row_read_ts: to_vec_scalar(&row_read_ts), + row_audit_ts: to_vec_scalar(&row_audit_ts), + col_read_ts: to_vec_scalar(&col_read_ts), + col_audit_ts: to_vec_scalar(&col_audit_ts), + } + } + + fn commit(&self, ck: &CommitmentKey) -> R1CSShapeSparkCommitment { + let comm_vec: Vec> = [ + &self.row, + &self.col, + &self.val_A, + &self.val_B, + &self.val_C, + &self.row_read_ts, + &self.row_audit_ts, + &self.col_read_ts, + &self.col_audit_ts, + ] + .par_iter() + .map(|v| G::CE::commit(ck, v)) + .collect(); + + R1CSShapeSparkCommitment { + N: self.row.len(), + comm_row: comm_vec[0], + comm_col: comm_vec[1], + comm_val_A: comm_vec[2], + comm_val_B: comm_vec[3], + comm_val_C: comm_vec[4], + comm_row_read_ts: comm_vec[5], + comm_row_audit_ts: comm_vec[6], + comm_col_read_ts: comm_vec[7], + comm_col_audit_ts: comm_vec[8], + } + } + + /// evaluates the the provided R1CSShape at (r_x, r_y) + pub fn multi_evaluate( + M_vec: &[&[(usize, usize, G::Scalar)]], + r_x: &[G::Scalar], + r_y: &[G::Scalar], + ) -> Vec { + let evaluate_with_table = + |M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar { + (0..M.len()) + .collect::>() + .par_iter() + .map(|&i| { + let (row, col, val) = M[i]; + T_x[row] * T_y[col] * val + }) + .reduce(G::Scalar::zero, |acc, x| acc + x) + }; + + let (T_x, T_y) = rayon::join( + || EqPolynomial::new(r_x.to_vec()).evals(), + || EqPolynomial::new(r_y.to_vec()).evals(), + ); + + (0..M_vec.len()) + .collect::>() + .par_iter() + .map(|&i| evaluate_with_table(M_vec[i], &T_x, &T_y)) + .collect() + } + + // computes evaluation oracles + fn evaluation_oracles( + &self, + S: &R1CSShape, + r_x: &[G::Scalar], + z: &[G::Scalar], + ) -> ( + Vec, + Vec, + Vec, + Vec, + ) { + let r_x_padded = { + let mut x = vec![G::Scalar::zero(); self.N.log_2() - r_x.len()]; + x.extend(r_x); + x + }; + + let mem_row = EqPolynomial::new(r_x_padded).evals(); + let mem_col = { + let mut z = z.to_vec(); + z.resize(self.N, G::Scalar::zero()); + z + }; + + let mut E_row = S + .A + .iter() + .chain(S.B.iter()) + .chain(S.C.iter()) + .map(|(r, _, _)| mem_row[*r]) + .collect::>(); + + let mut E_col = S + .A + .iter() + .chain(S.B.iter()) + .chain(S.C.iter()) + .map(|(_, c, _)| mem_col[*c]) + .collect::>(); + + E_row.resize(self.N, mem_row[0]); // we place mem_row[0] since resized row is appended with 0s + E_col.resize(self.N, mem_col[0]); + + (mem_row, mem_col, E_row, E_col) + } +} + +/// A type that represents the memory-checking argument +#[derive(Serialize, Deserialize)] +#[serde(bound = "")] +pub struct MemcheckProof { + sc_prod: ProductArgument, + + eval_init_row: G::Scalar, + eval_read_row: G::Scalar, + eval_write_row: G::Scalar, + eval_audit_row: G::Scalar, + eval_init_col: G::Scalar, + eval_read_col: G::Scalar, + eval_write_col: G::Scalar, + eval_audit_col: G::Scalar, + + eval_row: G::Scalar, + eval_row_read_ts: G::Scalar, + eval_E_row: G::Scalar, + eval_row_audit_ts: G::Scalar, + eval_col: G::Scalar, + eval_col_read_ts: G::Scalar, + eval_E_col: G::Scalar, + eval_col_audit_ts: G::Scalar, + eval_z: G::Scalar, +} + +impl MemcheckProof { + #[allow(clippy::too_many_arguments)] + /// proves a memory-checking relation + fn prove( + ck: &CommitmentKey, + S_repr: &R1CSShapeSparkRepr, + S_comm: &R1CSShapeSparkCommitment, + mem_row: &[G::Scalar], + comm_E_row: &Commitment, + E_row: &[G::Scalar], + mem_col: &[G::Scalar], + comm_E_col: &Commitment, + E_col: &[G::Scalar], + transcript: &mut G::TE, + ) -> Result< + ( + MemcheckProof, + Vec<(PolyEvalWitness, PolyEvalInstance)>, + G::Scalar, + Vec, + ), + NovaError, + > { + // we now need to prove that E_row and E_col are well-formed + // we use memory checking: H(INIT) * H(WS) =? H(RS) * H(FINAL) + let gamma_1 = transcript.squeeze(b"g1")?; + let gamma_2 = transcript.squeeze(b"g2")?; + + let gamma_1_sqr = gamma_1 * gamma_1; + let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar { + (*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2 + }; + + let init_row = (0..mem_row.len()) + .map(|i| hash_func(&G::Scalar::from(i as u64), &mem_row[i], &G::Scalar::zero())) + .collect::>(); + let read_row = (0..E_row.len()) + .map(|i| hash_func(&S_repr.row[i], &E_row[i], &S_repr.row_read_ts[i])) + .collect::>(); + let write_row = (0..E_row.len()) + .map(|i| { + hash_func( + &S_repr.row[i], + &E_row[i], + &(S_repr.row_read_ts[i] + G::Scalar::one()), + ) + }) + .collect::>(); + let audit_row = (0..mem_row.len()) + .map(|i| { + hash_func( + &G::Scalar::from(i as u64), + &mem_row[i], + &S_repr.row_audit_ts[i], + ) + }) + .collect::>(); + + let init_col = (0..mem_col.len()) + .map(|i| hash_func(&G::Scalar::from(i as u64), &mem_col[i], &G::Scalar::zero())) + .collect::>(); + let read_col = (0..E_col.len()) + .map(|i| hash_func(&S_repr.col[i], &E_col[i], &S_repr.col_read_ts[i])) + .collect::>(); + let write_col = (0..E_col.len()) + .map(|i| { + hash_func( + &S_repr.col[i], + &E_col[i], + &(S_repr.col_read_ts[i] + G::Scalar::one()), + ) + }) + .collect::>(); + let audit_col = (0..mem_col.len()) + .map(|i| { + hash_func( + &G::Scalar::from(i as u64), + &mem_col[i], + &S_repr.col_audit_ts[i], + ) + }) + .collect::>(); + + let (sc_prod, evals_prod, r_prod, _evals_input_vec, mut w_u_vec) = ProductArgument::prove( + ck, + &[ + init_row, read_row, write_row, audit_row, init_col, read_col, write_col, audit_col, + ], + transcript, + )?; + + // row-related and col-related claims of polynomial evaluations to aid the final check of the sum-check + let evals = [ + &S_repr.row, + &S_repr.row_read_ts, + E_row, + &S_repr.row_audit_ts, + &S_repr.col, + &S_repr.col_read_ts, + E_col, + &S_repr.col_audit_ts, + mem_col, + ] + .into_par_iter() + .map(|p| MultilinearPolynomial::evaluate_with(p, &r_prod)) + .collect::>(); + + let eval_row = evals[0]; + let eval_row_read_ts = evals[1]; + let eval_E_row = evals[2]; + let eval_row_audit_ts = evals[3]; + let eval_col = evals[4]; + let eval_col_read_ts = evals[5]; + let eval_E_col = evals[6]; + let eval_col_audit_ts = evals[7]; + let eval_z = evals[8]; + + // we can batch all the claims + transcript.absorb( + b"e", + &[ + eval_row, + eval_row_read_ts, + eval_E_row, + eval_row_audit_ts, + eval_col, + eval_col_read_ts, + eval_E_col, + eval_col_audit_ts, + ] + .as_slice(), + ); + let c = transcript.squeeze(b"c")?; + let eval_joint = eval_row + + c * eval_row_read_ts + + c * c * eval_E_row + + c * c * c * eval_row_audit_ts + + c * c * c * c * eval_col + + c * c * c * c * c * eval_col_read_ts + + c * c * c * c * c * c * eval_E_col + + c * c * c * c * c * c * c * eval_col_audit_ts; + let comm_joint = S_comm.comm_row + + S_comm.comm_row_read_ts * c + + *comm_E_row * c * c + + S_comm.comm_row_audit_ts * c * c * c + + S_comm.comm_col * c * c * c * c + + S_comm.comm_col_read_ts * c * c * c * c * c + + *comm_E_col * c * c * c * c * c * c + + S_comm.comm_col_audit_ts * c * c * c * c * c * c * c; + let poly_joint = S_repr + .row + .iter() + .zip(S_repr.row_read_ts.iter()) + .zip(E_row.iter()) + .zip(S_repr.row_audit_ts.iter()) + .zip(S_repr.col.iter()) + .zip(S_repr.col_read_ts.iter()) + .zip(E_col.iter()) + .zip(S_repr.col_audit_ts.iter()) + .map(|(((((((x, y), z), m), n), q), s), t)| { + *x + c * y + + c * c * z + + c * c * c * m + + c * c * c * c * n + + c * c * c * c * c * q + + c * c * c * c * c * c * s + + c * c * c * c * c * c * c * t + }) + .collect::>(); + + // add the claim to prove for later + w_u_vec.push(( + PolyEvalWitness { p: poly_joint }, + PolyEvalInstance { + c: comm_joint, + x: r_prod.clone(), + e: eval_joint, + }, + )); + + let eval_arg = Self { + eval_init_row: evals_prod[0], + eval_read_row: evals_prod[1], + eval_write_row: evals_prod[2], + eval_audit_row: evals_prod[3], + eval_init_col: evals_prod[4], + eval_read_col: evals_prod[5], + eval_write_col: evals_prod[6], + eval_audit_col: evals_prod[7], + sc_prod, + + eval_row, + eval_row_read_ts, + eval_E_row, + eval_row_audit_ts, + eval_col, + eval_col_read_ts, + eval_E_col, + eval_col_audit_ts, + eval_z, + }; + + Ok((eval_arg, w_u_vec, eval_z, r_prod)) + } + + /// verifies a memory-checking relation + fn verify( + &self, + S_comm: &R1CSShapeSparkCommitment, + comm_E_row: &Commitment, + comm_E_col: &Commitment, + r_x: &[G::Scalar], + transcript: &mut G::TE, + ) -> Result<(Vec>, G::Scalar, Vec), NovaError> { + let r_x_padded = { + let mut x = vec![G::Scalar::zero(); S_comm.N.log_2() - r_x.len()]; + x.extend(r_x); + x + }; + + // verify if E_row and E_col are well formed + let gamma_1 = transcript.squeeze(b"g1")?; + let gamma_2 = transcript.squeeze(b"g2")?; + + // hash function + let gamma_1_sqr = gamma_1 * gamma_1; + let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar { + (*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2 + }; + + // check the required multiset relationship + // row + if self.eval_init_row * self.eval_write_row != self.eval_read_row * self.eval_audit_row { + return Err(NovaError::InvalidMultisetProof); + } + // col + if self.eval_init_col * self.eval_write_col != self.eval_read_col * self.eval_audit_col { + return Err(NovaError::InvalidMultisetProof); + } + + // verify the product proofs + let (claims_final, r_prod, mut u_vec) = self.sc_prod.verify( + &[ + self.eval_init_row, + self.eval_read_row, + self.eval_write_row, + self.eval_audit_row, + self.eval_init_col, + self.eval_read_col, + self.eval_write_col, + self.eval_audit_col, + ], + S_comm.N, + transcript, + )?; + + // finish the final step of the sum-check + let (claim_init_expected_row, claim_audit_expected_row) = { + let addr = IdentityPolynomial::new(r_prod.len()).evaluate(&r_prod); + let val = EqPolynomial::new(r_x_padded.to_vec()).evaluate(&r_prod); + ( + hash_func(&addr, &val, &G::Scalar::zero()), + hash_func(&addr, &val, &self.eval_row_audit_ts), + ) + }; + + let (claim_read_expected_row, claim_write_expected_row) = { + ( + hash_func(&self.eval_row, &self.eval_E_row, &self.eval_row_read_ts), + hash_func( + &self.eval_row, + &self.eval_E_row, + &(self.eval_row_read_ts + G::Scalar::one()), + ), + ) + }; + + // multiset check for the row + if claim_init_expected_row != claims_final[0] + || claim_read_expected_row != claims_final[1] + || claim_write_expected_row != claims_final[2] + || claim_audit_expected_row != claims_final[3] + { + return Err(NovaError::InvalidSumcheckProof); + } + + let (claim_init_expected_col, claim_audit_expected_col) = { + let addr = IdentityPolynomial::new(r_prod.len()).evaluate(&r_prod); + let val = self.eval_z; // this value is later checked against U.comm_W and u.X + ( + hash_func(&addr, &val, &G::Scalar::zero()), + hash_func(&addr, &val, &self.eval_col_audit_ts), + ) + }; + + let (claim_read_expected_col, claim_write_expected_col) = { + ( + hash_func(&self.eval_col, &self.eval_E_col, &self.eval_col_read_ts), + hash_func( + &self.eval_col, + &self.eval_E_col, + &(self.eval_col_read_ts + G::Scalar::one()), + ), + ) + }; + + // multiset check for the col + if claim_init_expected_col != claims_final[4] + || claim_read_expected_col != claims_final[5] + || claim_write_expected_col != claims_final[6] + || claim_audit_expected_col != claims_final[7] + { + return Err(NovaError::InvalidSumcheckProof); + } + + transcript.absorb( + b"e", + &[ + self.eval_row, + self.eval_row_read_ts, + self.eval_E_row, + self.eval_row_audit_ts, + self.eval_col, + self.eval_col_read_ts, + self.eval_E_col, + self.eval_col_audit_ts, + ] + .as_slice(), + ); + let c = transcript.squeeze(b"c")?; + let eval_joint = self.eval_row + + c * self.eval_row_read_ts + + c * c * self.eval_E_row + + c * c * c * self.eval_row_audit_ts + + c * c * c * c * self.eval_col + + c * c * c * c * c * self.eval_col_read_ts + + c * c * c * c * c * c * self.eval_E_col + + c * c * c * c * c * c * c * self.eval_col_audit_ts; + let comm_joint = S_comm.comm_row + + S_comm.comm_row_read_ts * c + + *comm_E_row * c * c + + S_comm.comm_row_audit_ts * c * c * c + + S_comm.comm_col * c * c * c * c + + S_comm.comm_col_read_ts * c * c * c * c * c + + *comm_E_col * c * c * c * c * c * c + + S_comm.comm_col_audit_ts * c * c * c * c * c * c * c; + + u_vec.push(PolyEvalInstance { + c: comm_joint, + x: r_prod.clone(), + e: eval_joint, + }); + + Ok((u_vec, self.eval_z, r_prod)) + } +} + +/// A type that represents the prover's key +#[derive(Serialize, Deserialize)] +#[serde(bound = "")] +pub struct ProverKey> { + pk_ee: EE::ProverKey, + S: R1CSShape, + S_repr: R1CSShapeSparkRepr, + S_comm: R1CSShapeSparkCommitment, +} + +/// A type that represents the verifier's key +#[derive(Serialize, Deserialize)] +#[serde(bound = "")] +pub struct VerifierKey> { + num_cons: usize, + num_vars: usize, + vk_ee: EE::VerifierKey, + S_comm: R1CSShapeSparkCommitment, +} + +/// A succinct proof of knowledge of a witness to a relaxed R1CS instance +/// The proof is produced using Spartan's combination of the sum-check and +/// the commitment to a vector viewed as a polynomial commitment +#[derive(Serialize, Deserialize)] +#[serde(bound = "")] +pub struct RelaxedR1CSSNARK> { + // outer sum-check + sc_proof_outer: SumcheckProof, + + // claims from the end of the outer sum-check + eval_Az: G::Scalar, + eval_Bz: G::Scalar, + eval_Cz: G::Scalar, + eval_E: G::Scalar, + + // commitment to oracles for the inner sum-check + comm_E_row: Commitment, + comm_E_col: Commitment, + + // inner sum-check + sc_proof_inner: SumcheckProof, + + // claims from the end of inner sum-check + eval_E_row: G::Scalar, + eval_E_col: G::Scalar, + eval_val_A: G::Scalar, + eval_val_B: G::Scalar, + eval_val_C: G::Scalar, + + // memory-checking proof + mc_proof: MemcheckProof, + + // claim about W evaluation + eval_W: G::Scalar, + + // batch openings of all multilinear polynomials + sc_proof_batch: SumcheckProof, + evals_batch: Vec, + eval_arg: EE::EvaluationArgument, +} + +impl> RelaxedR1CSSNARKTrait + for RelaxedR1CSSNARK +{ + type ProverKey = ProverKey; + type VerifierKey = VerifierKey; + + fn setup( + ck: &CommitmentKey, + S: &R1CSShape, + ) -> Result<(Self::ProverKey, Self::VerifierKey), NovaError> { + let (pk_ee, vk_ee) = EE::setup(ck); + + // pad the R1CS matrices + let S = S.pad(); + + let S_repr = R1CSShapeSparkRepr::new(&S); + let S_comm = S_repr.commit(ck); + + let vk = VerifierKey { + num_cons: S.num_cons, + num_vars: S.num_vars, + S_comm: S_comm.clone(), + vk_ee, + }; + + let pk = ProverKey { + pk_ee, + S, + S_repr, + S_comm, + }; + + Ok((pk, vk)) + } + + /// produces a succinct proof of satisfiability of a RelaxedR1CS instance + fn prove( + ck: &CommitmentKey, + pk: &Self::ProverKey, + U: &RelaxedR1CSInstance, + W: &RelaxedR1CSWitness, + ) -> Result { + let W = W.pad(&pk.S); // pad the witness + let mut transcript = G::TE::new(b"RelaxedR1CSSNARK"); + + // a list of polynomial evaluation claims that will be batched + let mut w_u_vec = Vec::new(); + + // sanity check that R1CSShape has certain size characteristics + assert_eq!(pk.S.num_cons.next_power_of_two(), pk.S.num_cons); + assert_eq!(pk.S.num_vars.next_power_of_two(), pk.S.num_vars); + assert_eq!(pk.S.num_io.next_power_of_two(), pk.S.num_io); + assert!(pk.S.num_io < pk.S.num_vars); + + // append the commitment to R1CS matrices and the RelaxedR1CSInstance to the transcript + transcript.absorb(b"C", &pk.S_comm); + transcript.absorb(b"U", U); + + // compute the full satisfying assignment by concatenating W.W, U.u, and U.X + let z = concat(vec![W.W.clone(), vec![U.u], U.X.clone()]); + + let (num_rounds_x, _num_rounds_y) = ( + (pk.S.num_cons as f64).log2() as usize, + ((pk.S.num_vars as f64).log2() as usize + 1), + ); + + // outer sum-check + let tau = (0..num_rounds_x) + .map(|_i| transcript.squeeze(b"t")) + .collect::, NovaError>>()?; + + let mut poly_tau = MultilinearPolynomial::new(EqPolynomial::new(tau).evals()); + let (mut poly_Az, mut poly_Bz, poly_Cz, mut poly_uCz_E) = { + let (poly_Az, poly_Bz, poly_Cz) = pk.S.multiply_vec(&z)?; + let poly_uCz_E = (0..pk.S.num_cons) + .map(|i| U.u * poly_Cz[i] + W.E[i]) + .collect::>(); + ( + MultilinearPolynomial::new(poly_Az), + MultilinearPolynomial::new(poly_Bz), + MultilinearPolynomial::new(poly_Cz), + MultilinearPolynomial::new(poly_uCz_E), + ) + }; + + let comb_func_outer = + |poly_A_comp: &G::Scalar, + poly_B_comp: &G::Scalar, + poly_C_comp: &G::Scalar, + poly_D_comp: &G::Scalar| + -> G::Scalar { *poly_A_comp * (*poly_B_comp * *poly_C_comp - *poly_D_comp) }; + let (sc_proof_outer, r_x, claims_outer) = SumcheckProof::prove_cubic_with_additive_term( + &G::Scalar::zero(), // claim is zero + num_rounds_x, + &mut poly_tau, + &mut poly_Az, + &mut poly_Bz, + &mut poly_uCz_E, + comb_func_outer, + &mut transcript, + )?; + + // claims from the end of sum-check + let (eval_Az, eval_Bz): (G::Scalar, G::Scalar) = (claims_outer[1], claims_outer[2]); + let eval_Cz = poly_Cz.evaluate(&r_x); + let eval_E = MultilinearPolynomial::new(W.E.clone()).evaluate(&r_x); + transcript.absorb(b"o", &[eval_Az, eval_Bz, eval_Cz, eval_E].as_slice()); + + // add claim about eval_E to be proven + w_u_vec.push(( + PolyEvalWitness { p: W.E.clone() }, + PolyEvalInstance { + c: U.comm_E, + x: r_x.clone(), + e: eval_E, + }, + )); + + // send oracles to aid the inner sum-check + // E_row(i) = eq(r_x, row(i)) for all i + // E_col(i) = z(col(i)) for all i + let (mem_row, z, E_row, E_col) = pk.S_repr.evaluation_oracles(&pk.S, &r_x, &z); + let (comm_E_row, comm_E_col) = + rayon::join(|| G::CE::commit(ck, &E_row), || G::CE::commit(ck, &E_col)); + + // add E_row and E_col to transcript + transcript.absorb(b"e", &vec![comm_E_row, comm_E_col].as_slice()); + + let r = transcript.squeeze(b"r")?; + let val = pk + .S_repr + .val_A + .iter() + .zip(pk.S_repr.val_B.iter()) + .zip(pk.S_repr.val_C.iter()) + .map(|((a, b), c)| *a + r * *b + r * r * *c) + .collect::>(); + + // inner sum-check + let claim_inner_joint = eval_Az + r * eval_Bz + r * r * eval_Cz; + let num_rounds_y = pk.S_repr.N.log_2(); + let comb_func = |poly_A_comp: &G::Scalar, + poly_B_comp: &G::Scalar, + poly_C_comp: &G::Scalar| + -> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp }; + + debug_assert_eq!( + E_row + .iter() + .zip(val.iter()) + .zip(E_col.iter()) + .map(|((a, b), c)| *a * *b * *c) + .fold(G::Scalar::zero(), |acc, item| acc + item), + claim_inner_joint + ); + + let (sc_proof_inner, r_y, claims_inner) = SumcheckProof::prove_cubic( + &claim_inner_joint, + num_rounds_y, + &mut MultilinearPolynomial::new(E_row.clone()), + &mut MultilinearPolynomial::new(E_col.clone()), + &mut MultilinearPolynomial::new(val), + comb_func, + &mut transcript, + )?; + + let eval_E_row = claims_inner[0]; + let eval_E_col = claims_inner[1]; + let eval_val_A = MultilinearPolynomial::evaluate_with(&pk.S_repr.val_A, &r_y); + let eval_val_B = MultilinearPolynomial::evaluate_with(&pk.S_repr.val_B, &r_y); + let eval_val_C = MultilinearPolynomial::evaluate_with(&pk.S_repr.val_C, &r_y); + + // since all the five polynomials are opened at r_y, + // we can combine them into a single polynomial opened at r_y + transcript.absorb( + b"e", + &[eval_E_row, eval_E_col, eval_val_A, eval_val_B, eval_val_C].as_slice(), + ); + let c = transcript.squeeze(b"c")?; + let eval_sc_inner = eval_E_row + + c * eval_E_col + + c * c * eval_val_A + + c * c * c * eval_val_B + + c * c * c * c * eval_val_C; + let comm_sc_inner = comm_E_row + + comm_E_col * c + + pk.S_comm.comm_val_A * c * c + + pk.S_comm.comm_val_B * c * c * c + + pk.S_comm.comm_val_C * c * c * c * c; + let poly_sc_inner = E_row + .iter() + .zip(E_col.iter()) + .zip(pk.S_repr.val_A.iter()) + .zip(pk.S_repr.val_B.iter()) + .zip(pk.S_repr.val_C.iter()) + .map(|((((x, y), z), m), n)| *x + c * y + c * c * z + c * c * c * m + c * c * c * c * n) + .collect::>(); + + w_u_vec.push(( + PolyEvalWitness { p: poly_sc_inner }, + PolyEvalInstance { + c: comm_sc_inner, + x: r_y, + e: eval_sc_inner, + }, + )); + + // we need to prove that E_row and E_col are well-formed + let (mc_proof, w_u_vec_mem, _eval_z, r_prod) = MemcheckProof::prove( + ck, + &pk.S_repr, + &pk.S_comm, + &mem_row, + &comm_E_row, + &E_row, + &z, + &comm_E_col, + &E_col, + &mut transcript, + )?; + + // add claims from memory-checking + w_u_vec.extend(w_u_vec_mem); + + // we need to prove that eval_z = z(r_prod) = (1-r_prod[0]) * W.w(r_prod[1..]) + r_prod[0] * U.x(r_prod[1..]). + // r_prod was padded, so we now remove the padding + let r_prod_unpad = { + let l = pk.S_repr.N.log_2() - (2 * pk.S.num_vars).log_2(); + r_prod[l..].to_vec() + }; + + let eval_W = MultilinearPolynomial::evaluate_with(&W.W, &r_prod_unpad[1..]); + w_u_vec.push(( + PolyEvalWitness { p: W.W }, + PolyEvalInstance { + c: U.comm_W, + x: r_prod_unpad[1..].to_vec(), + e: eval_W, + }, + )); + + // We will now reduce a vector of claims of evaluations at different points into claims about them at the same point. + // For example, eval_W =? W(r_y[1..]) and eval_W =? E(r_x) into + // two claims: eval_W_prime =? W(rz) and eval_E_prime =? E(rz) + // We can them combine the two into one: eval_W_prime + gamma * eval_E_prime =? (W + gamma*E)(rz), + // where gamma is a public challenge + // Since commitments to W and E are homomorphic, the verifier can compute a commitment + // to the batched polynomial. + assert!(w_u_vec.len() >= 2); + + let (w_vec, u_vec): (Vec>, Vec>) = + w_u_vec.into_iter().unzip(); + let w_vec_padded = PolyEvalWitness::pad(&w_vec); // pad the polynomials to be of the same size + let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points + + let powers = |s: &G::Scalar, n: usize| -> Vec { + assert!(n >= 1); + let mut powers = Vec::new(); + powers.push(G::Scalar::one()); + for i in 1..n { + powers.push(powers[i - 1] * s); + } + powers + }; + + // generate a challenge + let rho = transcript.squeeze(b"r")?; + let num_claims = w_vec_padded.len(); + let powers_of_rho = powers(&rho, num_claims); + let claim_batch_joint = u_vec_padded + .iter() + .zip(powers_of_rho.iter()) + .map(|(u, p)| u.e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let mut polys_left: Vec> = w_vec_padded + .iter() + .map(|w| MultilinearPolynomial::new(w.p.clone())) + .collect(); + let mut polys_right: Vec> = u_vec_padded + .iter() + .map(|u| MultilinearPolynomial::new(EqPolynomial::new(u.x.clone()).evals())) + .collect(); + + let num_rounds_z = u_vec_padded[0].x.len(); + let comb_func = |poly_A_comp: &G::Scalar, poly_B_comp: &G::Scalar| -> G::Scalar { + *poly_A_comp * *poly_B_comp + }; + let (sc_proof_batch, r_z, claims_batch) = SumcheckProof::prove_quad_batch( + &claim_batch_joint, + num_rounds_z, + &mut polys_left, + &mut polys_right, + &powers_of_rho, + comb_func, + &mut transcript, + )?; + + let (claims_batch_left, _): (Vec, Vec) = claims_batch; + + transcript.absorb(b"l", &claims_batch_left.as_slice()); + + // we now combine evaluation claims at the same point rz into one + let gamma = transcript.squeeze(b"g")?; + let powers_of_gamma: Vec = powers(&gamma, num_claims); + let comm_joint = u_vec_padded + .iter() + .zip(powers_of_gamma.iter()) + .map(|(u, g_i)| u.c * *g_i) + .fold(Commitment::::default(), |acc, item| acc + item); + let poly_joint = PolyEvalWitness::weighted_sum(&w_vec_padded, &powers_of_gamma); + let eval_joint = claims_batch_left + .iter() + .zip(powers_of_gamma.iter()) + .map(|(e, g_i)| *e * *g_i) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let eval_arg = EE::prove( + ck, + &pk.pk_ee, + &mut transcript, + &comm_joint, + &poly_joint.p, + &r_z, + &eval_joint, + )?; + + Ok(RelaxedR1CSSNARK { + sc_proof_outer, + eval_Az, + eval_Bz, + eval_Cz, + eval_E, + comm_E_row, + comm_E_col, + sc_proof_inner, + eval_E_row, + eval_val_A, + eval_val_B, + eval_val_C, + eval_E_col, + + mc_proof, + + eval_W, + + sc_proof_batch, + evals_batch: claims_batch_left, + eval_arg, + }) + } + + /// verifies a proof of satisfiability of a RelaxedR1CS instance + fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance) -> Result<(), NovaError> { + let mut transcript = G::TE::new(b"RelaxedR1CSSNARK"); + let mut u_vec: Vec> = Vec::new(); + + // append the commitment to R1CS matrices and the RelaxedR1CSInstance to the transcript + transcript.absorb(b"C", &vk.S_comm); + transcript.absorb(b"U", U); + + let num_rounds_x = (vk.num_cons as f64).log2() as usize; + + // outer sum-check + let tau = (0..num_rounds_x) + .map(|_i| transcript.squeeze(b"t")) + .collect::, NovaError>>()?; + + let (claim_outer_final, r_x) = + self + .sc_proof_outer + .verify(G::Scalar::zero(), num_rounds_x, 3, &mut transcript)?; + + // verify claim_outer_final + let taus_bound_rx = EqPolynomial::new(tau).evaluate(&r_x); + let claim_outer_final_expected = + taus_bound_rx * (self.eval_Az * self.eval_Bz - U.u * self.eval_Cz - self.eval_E); + if claim_outer_final != claim_outer_final_expected { + return Err(NovaError::InvalidSumcheckProof); + } + + // absorb the claim about eval_E to be checked later + u_vec.push(PolyEvalInstance { + c: U.comm_E, + x: r_x.clone(), + e: self.eval_E, + }); + + transcript.absorb( + b"o", + &[self.eval_Az, self.eval_Bz, self.eval_Cz, self.eval_E].as_slice(), + ); + + // add claimed oracles + transcript.absorb(b"e", &vec![self.comm_E_row, self.comm_E_col].as_slice()); + + // inner sum-check + let r = transcript.squeeze(b"r")?; + let claim_inner_joint = self.eval_Az + r * self.eval_Bz + r * r * self.eval_Cz; + let num_rounds_y = vk.S_comm.N.log_2(); + + let (claim_inner_final, r_y) = + self + .sc_proof_inner + .verify(claim_inner_joint, num_rounds_y, 3, &mut transcript)?; + + // verify claim_inner_final + let claim_inner_final_expected = self.eval_E_row + * self.eval_E_col + * (self.eval_val_A + r * self.eval_val_B + r * r * self.eval_val_C); + if claim_inner_final != claim_inner_final_expected { + return Err(NovaError::InvalidSumcheckProof); + } + + // add claims about five polynomials used at the end of the inner sum-check + // since they are all evaluated at r_y, we can batch them into one + transcript.absorb( + b"e", + &[ + self.eval_E_row, + self.eval_E_col, + self.eval_val_A, + self.eval_val_B, + self.eval_val_C, + ] + .as_slice(), + ); + let c = transcript.squeeze(b"c")?; + let eval_sc_inner = self.eval_E_row + + c * self.eval_E_col + + c * c * self.eval_val_A + + c * c * c * self.eval_val_B + + c * c * c * c * self.eval_val_C; + let comm_sc_inner = self.comm_E_row + + self.comm_E_col * c + + vk.S_comm.comm_val_A * c * c + + vk.S_comm.comm_val_B * c * c * c + + vk.S_comm.comm_val_C * c * c * c * c; + + u_vec.push(PolyEvalInstance { + c: comm_sc_inner, + x: r_y, + e: eval_sc_inner, + }); + + let (u_vec_mem, eval_Z, r_prod) = self.mc_proof.verify( + &vk.S_comm, + &self.comm_E_row, + &self.comm_E_col, + &r_x, + &mut transcript, + )?; + + u_vec.extend(u_vec_mem); + + // we verify that eval_z = z(r_prod) = (1-r_prod[0]) * W.w(r_prod[1..]) + r_prod[0] * U.x(r_prod[1..]). + let (eval_Z_expected, r_prod_unpad) = { + // r_prod was padded, so we now remove the padding + let (factor, r_prod_unpad) = { + let l = vk.S_comm.N.log_2() - (2 * vk.num_vars).log_2(); + + let mut factor = G::Scalar::one(); + for r_p in r_prod.iter().take(l) { + factor *= G::Scalar::one() - r_p + } + + (factor, r_prod[l..].to_vec()) + }; + + let eval_X = { + // constant term + let mut poly_X = vec![(0, U.u)]; + //remaining inputs + poly_X.extend( + (0..U.X.len()) + .map(|i| (i + 1, U.X[i])) + .collect::>(), + ); + SparsePolynomial::new((vk.num_vars as f64).log2() as usize, poly_X) + .evaluate(&r_prod_unpad[1..]) + }; + let eval_Z = + factor * ((G::Scalar::one() - r_prod_unpad[0]) * self.eval_W + r_prod_unpad[0] * eval_X); + + (eval_Z, r_prod_unpad) + }; + + if eval_Z != eval_Z_expected { + return Err(NovaError::IncorrectWitness); + } + + u_vec.push(PolyEvalInstance { + c: U.comm_W, + x: r_prod_unpad[1..].to_vec(), + e: self.eval_W, + }); + + let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points + + let powers = |s: &G::Scalar, n: usize| -> Vec { + assert!(n >= 1); + let mut powers = Vec::new(); + powers.push(G::Scalar::one()); + for i in 1..n { + powers.push(powers[i - 1] * s); + } + powers + }; + + // generate a challenge + let rho = transcript.squeeze(b"r")?; + let num_claims = u_vec.len(); + let powers_of_rho = powers(&rho, num_claims); + let claim_batch_joint = u_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(u, p)| u.e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let num_rounds_z = u_vec_padded[0].x.len(); + let (claim_batch_final, r_z) = + self + .sc_proof_batch + .verify(claim_batch_joint, num_rounds_z, 2, &mut transcript)?; + + let claim_batch_final_expected = { + let poly_rz = EqPolynomial::new(r_z.clone()); + let evals = u_vec_padded + .iter() + .map(|u| poly_rz.evaluate(&u.x)) + .collect::>(); + + evals + .iter() + .zip(self.evals_batch.iter()) + .zip(powers_of_rho.iter()) + .map(|((e_i, p_i), rho_i)| *e_i * *p_i * rho_i) + .fold(G::Scalar::zero(), |acc, item| acc + item) + }; + + if claim_batch_final != claim_batch_final_expected { + return Err(NovaError::InvalidSumcheckProof); + } + + transcript.absorb(b"l", &self.evals_batch.as_slice()); + + // we now combine evaluation claims at the same point rz into one + let gamma = transcript.squeeze(b"g")?; + let powers_of_gamma: Vec = powers(&gamma, num_claims); + let comm_joint = u_vec_padded + .iter() + .zip(powers_of_gamma.iter()) + .map(|(u, g_i)| u.c * *g_i) + .fold(Commitment::::default(), |acc, item| acc + item); + let eval_joint = self + .evals_batch + .iter() + .zip(powers_of_gamma.iter()) + .map(|(e, g_i)| *e * *g_i) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + // verify + EE::verify( + &vk.vk_ee, + &mut transcript, + &comm_joint, + &r_z, + &eval_joint, + &self.eval_arg, + )?; + + Ok(()) + } +} + +// provides direct interfaces to call the SNARK implemented in this module diff --git a/src/spartan/pp/product.rs b/src/spartan/pp/product.rs new file mode 100644 index 0000000..ac3975e --- /dev/null +++ b/src/spartan/pp/product.rs @@ -0,0 +1,629 @@ +use crate::{ + errors::NovaError, + spartan::{ + math::Math, + polynomial::{EqPolynomial, MultilinearPolynomial}, + sumcheck::{CompressedUniPoly, SumcheckProof, UniPoly}, + PolyEvalInstance, PolyEvalWitness, + }, + traits::{commitment::CommitmentEngineTrait, Group, TranscriptEngineTrait}, + Commitment, CommitmentKey, +}; +use core::marker::PhantomData; +use ff::{Field, PrimeField}; +use rayon::prelude::*; +use serde::{Deserialize, Serialize}; + +pub(crate) struct IdentityPolynomial { + ell: usize, + _p: PhantomData, +} + +impl IdentityPolynomial { + pub fn new(ell: usize) -> Self { + IdentityPolynomial { + ell, + _p: Default::default(), + } + } + + pub fn evaluate(&self, r: &[Scalar]) -> Scalar { + assert_eq!(self.ell, r.len()); + (0..self.ell) + .map(|i| Scalar::from(2_usize.pow((self.ell - i - 1) as u32) as u64) * r[i]) + .fold(Scalar::zero(), |acc, item| acc + item) + } +} + +impl SumcheckProof { + pub fn prove_cubic_with_additive_term_batched( + claim: &G::Scalar, + num_rounds: usize, + poly_vec: ( + &mut MultilinearPolynomial, + &mut Vec>, + &mut Vec>, + &mut Vec>, + ), + coeffs: &[G::Scalar], + comb_func: F, + transcript: &mut G::TE, + ) -> Result< + ( + Self, + Vec, + (G::Scalar, Vec, Vec, Vec), + ), + NovaError, + > + where + F: Fn(&G::Scalar, &G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar, + { + let (poly_A, poly_B_vec, poly_C_vec, poly_D_vec) = poly_vec; + + let mut e = *claim; + let mut r: Vec = Vec::new(); + let mut cubic_polys: Vec> = Vec::new(); + + for _j in 0..num_rounds { + let mut evals: Vec<(G::Scalar, G::Scalar, G::Scalar)> = Vec::new(); + + for ((poly_B, poly_C), poly_D) in poly_B_vec + .iter() + .zip(poly_C_vec.iter()) + .zip(poly_D_vec.iter()) + { + let mut eval_point_0 = G::Scalar::zero(); + let mut eval_point_2 = G::Scalar::zero(); + let mut eval_point_3 = G::Scalar::zero(); + + let len = poly_A.len() / 2; + for i in 0..len { + // eval 0: bound_func is A(low) + eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i], &poly_D[i]); + + // eval 2: bound_func is -A(low) + 2*A(high) + let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i]; + let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i]; + let poly_D_bound_point = poly_D[len + i] + poly_D[len + i] - poly_D[i]; + + eval_point_2 += comb_func( + &poly_A_bound_point, + &poly_B_bound_point, + &poly_C_bound_point, + &poly_D_bound_point, + ); + + // eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2) + let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i]; + let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i]; + let poly_D_bound_point = poly_D_bound_point + poly_D[len + i] - poly_D[i]; + + eval_point_3 += comb_func( + &poly_A_bound_point, + &poly_B_bound_point, + &poly_C_bound_point, + &poly_D_bound_point, + ); + } + + evals.push((eval_point_0, eval_point_2, eval_point_3)); + } + + let evals_combined_0 = (0..evals.len()) + .map(|i| evals[i].0 * coeffs[i]) + .fold(G::Scalar::zero(), |acc, item| acc + item); + let evals_combined_2 = (0..evals.len()) + .map(|i| evals[i].1 * coeffs[i]) + .fold(G::Scalar::zero(), |acc, item| acc + item); + let evals_combined_3 = (0..evals.len()) + .map(|i| evals[i].2 * coeffs[i]) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let evals = vec![ + evals_combined_0, + e - evals_combined_0, + evals_combined_2, + evals_combined_3, + ]; + let poly = UniPoly::from_evals(&evals); + + // append the prover's message to the transcript + transcript.absorb(b"p", &poly); + + // derive the verifier's challenge for the next round + let r_i = transcript.squeeze(b"c")?; + r.push(r_i); + + // bound all tables to the verifier's challenege + poly_A.bound_poly_var_top(&r_i); + for ((poly_B, poly_C), poly_D) in poly_B_vec + .iter_mut() + .zip(poly_C_vec.iter_mut()) + .zip(poly_D_vec.iter_mut()) + { + poly_B.bound_poly_var_top(&r_i); + poly_C.bound_poly_var_top(&r_i); + poly_D.bound_poly_var_top(&r_i); + } + + e = poly.evaluate(&r_i); + cubic_polys.push(poly.compress()); + } + + let poly_B_final = (0..poly_B_vec.len()).map(|i| poly_B_vec[i][0]).collect(); + let poly_C_final = (0..poly_C_vec.len()).map(|i| poly_C_vec[i][0]).collect(); + let poly_D_final = (0..poly_D_vec.len()).map(|i| poly_D_vec[i][0]).collect(); + let claims_prod = (poly_A[0], poly_B_final, poly_C_final, poly_D_final); + + Ok((SumcheckProof::new(cubic_polys), r, claims_prod)) + } +} + +/// Provides a product argument using the algorithm described by Setty-Lee, 2020 +#[derive(Serialize, Deserialize)] +#[serde(bound = "")] +pub struct ProductArgument { + comm_output_vec: Vec>, + sc_proof: SumcheckProof, + eval_left_vec: Vec, + eval_right_vec: Vec, + eval_output_vec: Vec, + eval_input_vec: Vec, + eval_output2_vec: Vec, +} + +impl ProductArgument { + pub fn prove( + ck: &CommitmentKey, + input_vec: &[Vec], // a commitment to the input and the input vector to multiplied together + transcript: &mut G::TE, + ) -> Result< + ( + Self, + Vec, + Vec, + Vec, + Vec<(PolyEvalWitness, PolyEvalInstance)>, + ), + NovaError, + > { + let num_claims = input_vec.len(); + + let compute_layer = |input: &[G::Scalar]| -> (Vec, Vec, Vec) { + let left = (0..input.len() / 2) + .map(|i| input[2 * i]) + .collect::>(); + + let right = (0..input.len() / 2) + .map(|i| input[2 * i + 1]) + .collect::>(); + + assert_eq!(left.len(), right.len()); + + let output = (0..left.len()) + .map(|i| left[i] * right[i]) + .collect::>(); + + (left, right, output) + }; + + // a closure that returns left, right, output, product + let prepare_inputs = + |input: &[G::Scalar]| -> (Vec, Vec, Vec, G::Scalar) { + let mut left: Vec = Vec::new(); + let mut right: Vec = Vec::new(); + let mut output: Vec = Vec::new(); + + let mut out = input.to_vec(); + for _i in 0..input.len().log_2() { + let (l, r, o) = compute_layer(&out); + out = o.clone(); + + left.extend(l); + right.extend(r); + output.extend(o); + } + + // add a dummy product operation to make the left.len() == right.len() == output.len() == input.len() + left.push(output[output.len() - 1]); + right.push(G::Scalar::zero()); + output.push(G::Scalar::zero()); + + // output is stored at the last but one position + let product = output[output.len() - 2]; + + assert_eq!(left.len(), right.len()); + assert_eq!(left.len(), output.len()); + (left, right, output, product) + }; + + let mut left_vec = Vec::new(); + let mut right_vec = Vec::new(); + let mut output_vec = Vec::new(); + let mut prod_vec = Vec::new(); + for input in input_vec { + let (l, r, o, p) = prepare_inputs(input); + left_vec.push(l); + right_vec.push(r); + output_vec.push(o); + prod_vec.push(p); + } + + // commit to the outputs + let comm_output_vec = (0..output_vec.len()) + .into_par_iter() + .map(|i| G::CE::commit(ck, &output_vec[i])) + .collect::>(); + + // absorb the output commitment and the claimed product + transcript.absorb(b"o", &comm_output_vec.as_slice()); + transcript.absorb(b"r", &prod_vec.as_slice()); + + // this assumes all vectors passed have the same length + let num_rounds = output_vec[0].len().log_2(); + + // produce a fresh set of coeffs and a joint claim + let coeff_vec = { + let s = transcript.squeeze(b"r")?; + let mut s_vec = vec![s]; + for i in 1..num_claims { + s_vec.push(s_vec[i - 1] * s); + } + s_vec + }; + + // generate randomness for the eq polynomial + let rand_eq = (0..num_rounds) + .map(|_i| transcript.squeeze(b"e")) + .collect::, NovaError>>()?; + + let mut poly_A = MultilinearPolynomial::new(EqPolynomial::new(rand_eq).evals()); + let mut poly_B_vec = left_vec + .clone() + .into_par_iter() + .map(MultilinearPolynomial::new) + .collect::>(); + let mut poly_C_vec = right_vec + .clone() + .into_par_iter() + .map(MultilinearPolynomial::new) + .collect::>(); + let mut poly_D_vec = output_vec + .clone() + .into_par_iter() + .map(MultilinearPolynomial::new) + .collect::>(); + + let comb_func = + |poly_A_comp: &G::Scalar, + poly_B_comp: &G::Scalar, + poly_C_comp: &G::Scalar, + poly_D_comp: &G::Scalar| + -> G::Scalar { *poly_A_comp * (*poly_B_comp * *poly_C_comp - *poly_D_comp) }; + + let (sc_proof, rand, _claims) = SumcheckProof::prove_cubic_with_additive_term_batched( + &G::Scalar::zero(), + num_rounds, + ( + &mut poly_A, + &mut poly_B_vec, + &mut poly_C_vec, + &mut poly_D_vec, + ), + &coeff_vec, + comb_func, + transcript, + )?; + + // claims[0] is about the Eq polynomial, which the verifier computes directly + // claims[1] =? weighed sum of left(rand) + // claims[2] =? weighted sum of right(rand) + // claims[3] =? weighetd sum of output(rand), which is easy to verify by querying output + // we also need to prove that output(output.len()-2) = claimed_product + let eval_left_vec = (0..left_vec.len()) + .into_par_iter() + .map(|i| MultilinearPolynomial::evaluate_with(&left_vec[i], &rand)) + .collect::>(); + let eval_right_vec = (0..right_vec.len()) + .into_par_iter() + .map(|i| MultilinearPolynomial::evaluate_with(&right_vec[i], &rand)) + .collect::>(); + let eval_output_vec = (0..output_vec.len()) + .into_par_iter() + .map(|i| MultilinearPolynomial::evaluate_with(&output_vec[i], &rand)) + .collect::>(); + + // we now combine eval_left = left(rand) and eval_right = right(rand) + // into claims about input and output + transcript.absorb(b"l", &eval_left_vec.as_slice()); + transcript.absorb(b"r", &eval_right_vec.as_slice()); + transcript.absorb(b"o", &eval_output_vec.as_slice()); + + let c = transcript.squeeze(b"c")?; + + // eval = (G::Scalar::one() - c) * eval_left + c * eval_right + // eval is claimed evaluation of input||output(r, c), which can be proven by proving input(r[1..], c) and output(r[1..], c) + let rand_ext = { + let mut r = rand.clone(); + r.extend(&[c]); + r + }; + let eval_input_vec = (0..input_vec.len()) + .into_par_iter() + .map(|i| MultilinearPolynomial::evaluate_with(&input_vec[i], &rand_ext[1..])) + .collect::>(); + + let eval_output2_vec = (0..output_vec.len()) + .into_par_iter() + .map(|i| MultilinearPolynomial::evaluate_with(&output_vec[i], &rand_ext[1..])) + .collect::>(); + + // add claimed evaluations to the transcript + transcript.absorb(b"i", &eval_input_vec.as_slice()); + transcript.absorb(b"o", &eval_output2_vec.as_slice()); + + // squeeze a challenge to combine multiple claims into one + let powers_of_rho = { + let s = transcript.squeeze(b"r")?; + let mut s_vec = vec![s]; + for i in 1..num_claims { + s_vec.push(s_vec[i - 1] * s); + } + s_vec + }; + + // take weighted sum of input, output, and their commitments + let product = prod_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(e, p)| *e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let eval_output = eval_output_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(e, p)| *e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let comm_output = comm_output_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(c, r_i)| *c * *r_i) + .fold(Commitment::::default(), |acc, item| acc + item); + + let weighted_sum = |W: &[Vec], s: &[G::Scalar]| -> Vec { + assert_eq!(W.len(), s.len()); + let mut p = vec![G::Scalar::zero(); W[0].len()]; + for i in 0..W.len() { + for (j, item) in W[i].iter().enumerate().take(W[i].len()) { + p[j] += *item * s[i] + } + } + p + }; + + let poly_output = weighted_sum(&output_vec, &powers_of_rho); + + let eval_output2 = eval_output2_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(e, p)| *e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let mut w_u_vec = Vec::new(); + + // eval_output = output(rand) + w_u_vec.push(( + PolyEvalWitness { + p: poly_output.clone(), + }, + PolyEvalInstance { + c: comm_output, + x: rand.clone(), + e: eval_output, + }, + )); + + // claimed_product = output(1, ..., 1, 0) + let x = { + let mut x = vec![G::Scalar::one(); rand.len()]; + x[rand.len() - 1] = G::Scalar::zero(); + x + }; + w_u_vec.push(( + PolyEvalWitness { + p: poly_output.clone(), + }, + PolyEvalInstance { + c: comm_output, + x, + e: product, + }, + )); + + // eval_output2 = output(rand_ext[1..]) + w_u_vec.push(( + PolyEvalWitness { p: poly_output }, + PolyEvalInstance { + c: comm_output, + x: rand_ext[1..].to_vec(), + e: eval_output2, + }, + )); + + let prod_arg = Self { + comm_output_vec, + sc_proof, + + // claimed evaluations at rand + eval_left_vec, + eval_right_vec, + eval_output_vec, + + // claimed evaluations at rand_ext[1..] + eval_input_vec: eval_input_vec.clone(), + eval_output2_vec, + }; + + Ok(( + prod_arg, + prod_vec, + rand_ext[1..].to_vec(), + eval_input_vec, + w_u_vec, + )) + } + + pub fn verify( + &self, + prod_vec: &[G::Scalar], // claimed products + len: usize, + transcript: &mut G::TE, + ) -> Result<(Vec, Vec, Vec>), NovaError> { + // absorb the provided commitment and claimed output + transcript.absorb(b"o", &self.comm_output_vec.as_slice()); + transcript.absorb(b"r", &prod_vec.to_vec().as_slice()); + + let num_rounds = len.log_2(); + let num_claims = prod_vec.len(); + + // produce a fresh set of coeffs and a joint claim + let coeff_vec = { + let s = transcript.squeeze(b"r")?; + let mut s_vec = vec![s]; + for i in 1..num_claims { + s_vec.push(s_vec[i - 1] * s); + } + s_vec + }; + + // generate randomness for the eq polynomial + let rand_eq = (0..num_rounds) + .map(|_i| transcript.squeeze(b"e")) + .collect::, NovaError>>()?; + + let (final_claim, rand) = self.sc_proof.verify( + G::Scalar::zero(), // claim + num_rounds, + 3, // degree bound + transcript, + )?; + + // verify the final claim along with output[output.len() - 2 ] = claim + let eq = EqPolynomial::new(rand_eq).evaluate(&rand); + let final_claim_expected = (0..num_claims) + .map(|i| { + coeff_vec[i] + * eq + * (self.eval_left_vec[i] * self.eval_right_vec[i] - self.eval_output_vec[i]) + }) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + if final_claim != final_claim_expected { + return Err(NovaError::InvalidSumcheckProof); + } + + transcript.absorb(b"l", &self.eval_left_vec.as_slice()); + transcript.absorb(b"r", &self.eval_right_vec.as_slice()); + transcript.absorb(b"o", &self.eval_output_vec.as_slice()); + + let c = transcript.squeeze(b"c")?; + let eval_vec = self + .eval_left_vec + .iter() + .zip(self.eval_right_vec.iter()) + .map(|(l, r)| (G::Scalar::one() - c) * l + c * r) + .collect::>(); + + // eval is claimed evaluation of input||output(r, c), which can be proven by proving input(r[1..], c) and output(r[1..], c) + let rand_ext = { + let mut r = rand.clone(); + r.extend(&[c]); + r + }; + + for (i, eval) in eval_vec.iter().enumerate() { + if *eval + != (G::Scalar::one() - rand_ext[0]) * self.eval_input_vec[i] + + rand_ext[0] * self.eval_output2_vec[i] + { + return Err(NovaError::InvalidSumcheckProof); + } + } + + transcript.absorb(b"i", &self.eval_input_vec.as_slice()); + transcript.absorb(b"o", &self.eval_output2_vec.as_slice()); + + // squeeze a challenge to combine multiple claims into one + let powers_of_rho = { + let s = transcript.squeeze(b"r")?; + let mut s_vec = vec![s]; + for i in 1..num_claims { + s_vec.push(s_vec[i - 1] * s); + } + s_vec + }; + + // take weighted sum of input, output, and their commitments + let product = prod_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(e, p)| *e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let eval_output = self + .eval_output_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(e, p)| *e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let comm_output = self + .comm_output_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(c, r_i)| *c * *r_i) + .fold(Commitment::::default(), |acc, item| acc + item); + + let eval_output2 = self + .eval_output2_vec + .iter() + .zip(powers_of_rho.iter()) + .map(|(e, p)| *e * p) + .fold(G::Scalar::zero(), |acc, item| acc + item); + + let mut u_vec = Vec::new(); + + // eval_output = output(rand) + u_vec.push(PolyEvalInstance { + c: comm_output, + x: rand.clone(), + e: eval_output, + }); + + // claimed_product = output(1, ..., 1, 0) + let x = { + let mut x = vec![G::Scalar::one(); rand.len()]; + x[rand.len() - 1] = G::Scalar::zero(); + x + }; + u_vec.push(PolyEvalInstance { + c: comm_output, + x, + e: product, + }); + + // eval_output2 = output(rand_ext[1..]) + u_vec.push(PolyEvalInstance { + c: comm_output, + x: rand_ext[1..].to_vec(), + e: eval_output2, + }); + + // input-related claims are checked by the caller + Ok((self.eval_input_vec.clone(), rand_ext[1..].to_vec(), u_vec)) + } +} diff --git a/src/spartan/spark/mod.rs b/src/spartan/spark/mod.rs deleted file mode 100644 index 6fc44b0..0000000 --- a/src/spartan/spark/mod.rs +++ /dev/null @@ -1,245 +0,0 @@ -//! This module implements `CompCommitmentEngineTrait` using Spartan's SPARK compiler -//! We also provide a trivial implementation that has the verifier evaluate the sparse polynomials -use crate::{ - errors::NovaError, - r1cs::R1CSShape, - spartan::{math::Math, CompCommitmentEngineTrait, PolyEvalInstance, PolyEvalWitness}, - traits::{evaluation::EvaluationEngineTrait, Group, TranscriptReprTrait}, - CommitmentKey, -}; -use core::marker::PhantomData; -use serde::{Deserialize, Serialize}; - -/// A trivial implementation of `ComputationCommitmentEngineTrait` -pub struct TrivialCompComputationEngine> { - _p: PhantomData, - _p2: PhantomData, -} - -/// Provides an implementation of a trivial commitment -#[derive(Clone, Debug, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct TrivialCommitment { - S: R1CSShape, -} - -/// Provides an implementation of a trivial decommitment -#[derive(Clone, Debug, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct TrivialDecommitment { - _p: PhantomData, -} - -/// Provides an implementation of a trivial evaluation argument -#[derive(Clone, Debug, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct TrivialEvaluationArgument { - _p: PhantomData, -} - -impl TranscriptReprTrait for TrivialCommitment { - fn to_transcript_bytes(&self) -> Vec { - self.S.to_transcript_bytes() - } -} - -impl> CompCommitmentEngineTrait - for TrivialCompComputationEngine -{ - type Decommitment = TrivialDecommitment; - type Commitment = TrivialCommitment; - type EvaluationArgument = TrivialEvaluationArgument; - - /// commits to R1CS matrices - fn commit( - _ck: &CommitmentKey, - S: &R1CSShape, - ) -> Result<(Self::Commitment, Self::Decommitment), NovaError> { - Ok(( - TrivialCommitment { S: S.clone() }, - TrivialDecommitment { - _p: Default::default(), - }, - )) - } - - /// proves an evaluation of R1CS matrices viewed as polynomials - fn prove( - _ck: &CommitmentKey, - _S: &R1CSShape, - _decomm: &Self::Decommitment, - _comm: &Self::Commitment, - _r: &(&[G::Scalar], &[G::Scalar]), - _transcript: &mut G::TE, - ) -> Result< - ( - Self::EvaluationArgument, - Vec<(PolyEvalWitness, PolyEvalInstance)>, - ), - NovaError, - > { - Ok(( - TrivialEvaluationArgument { - _p: Default::default(), - }, - Vec::new(), - )) - } - - /// verifies an evaluation of R1CS matrices viewed as polynomials - fn verify( - comm: &Self::Commitment, - r: &(&[G::Scalar], &[G::Scalar]), - _arg: &Self::EvaluationArgument, - _transcript: &mut G::TE, - ) -> Result<(G::Scalar, G::Scalar, G::Scalar, Vec>), NovaError> { - let (r_x, r_y) = r; - let evals = SparsePolynomial::::multi_evaluate(&[&comm.S.A, &comm.S.B, &comm.S.C], r_x, r_y); - Ok((evals[0], evals[1], evals[2], Vec::new())) - } -} - -mod product; -mod sparse; - -use sparse::{SparseEvaluationArgument, SparsePolynomial, SparsePolynomialCommitment}; - -/// A non-trivial implementation of `CompCommitmentEngineTrait` using Spartan's SPARK compiler -pub struct SparkEngine { - _p: PhantomData, -} - -/// An implementation of Spark decommitment -#[derive(Clone, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct SparkDecommitment { - A: SparsePolynomial, - B: SparsePolynomial, - C: SparsePolynomial, -} - -impl SparkDecommitment { - fn new(S: &R1CSShape) -> Self { - let ell = (S.num_cons.log_2(), S.num_vars.log_2() + 1); - let A = SparsePolynomial::new(ell, &S.A); - let B = SparsePolynomial::new(ell, &S.B); - let C = SparsePolynomial::new(ell, &S.C); - - Self { A, B, C } - } - - fn commit(&self, ck: &CommitmentKey) -> SparkCommitment { - let comm_A = self.A.commit(ck); - let comm_B = self.B.commit(ck); - let comm_C = self.C.commit(ck); - - SparkCommitment { - comm_A, - comm_B, - comm_C, - } - } -} - -/// An implementation of Spark commitment -#[derive(Clone, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct SparkCommitment { - comm_A: SparsePolynomialCommitment, - comm_B: SparsePolynomialCommitment, - comm_C: SparsePolynomialCommitment, -} - -impl TranscriptReprTrait for SparkCommitment { - fn to_transcript_bytes(&self) -> Vec { - let mut bytes = self.comm_A.to_transcript_bytes(); - bytes.extend(self.comm_B.to_transcript_bytes()); - bytes.extend(self.comm_C.to_transcript_bytes()); - bytes - } -} - -/// Provides an implementation of a trivial evaluation argument -#[derive(Clone, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct SparkEvaluationArgument { - arg_A: SparseEvaluationArgument, - arg_B: SparseEvaluationArgument, - arg_C: SparseEvaluationArgument, -} - -impl CompCommitmentEngineTrait for SparkEngine { - type Decommitment = SparkDecommitment; - type Commitment = SparkCommitment; - type EvaluationArgument = SparkEvaluationArgument; - - /// commits to R1CS matrices - fn commit( - ck: &CommitmentKey, - S: &R1CSShape, - ) -> Result<(Self::Commitment, Self::Decommitment), NovaError> { - let sparse = SparkDecommitment::new(S); - let comm = sparse.commit(ck); - Ok((comm, sparse)) - } - - /// proves an evaluation of R1CS matrices viewed as polynomials - fn prove( - ck: &CommitmentKey, - S: &R1CSShape, - decomm: &Self::Decommitment, - comm: &Self::Commitment, - r: &(&[G::Scalar], &[G::Scalar]), - transcript: &mut G::TE, - ) -> Result< - ( - Self::EvaluationArgument, - Vec<(PolyEvalWitness, PolyEvalInstance)>, - ), - NovaError, - > { - let (arg_A, u_w_vec_A) = - SparseEvaluationArgument::prove(ck, &decomm.A, &S.A, &comm.comm_A, r, transcript)?; - let (arg_B, u_w_vec_B) = - SparseEvaluationArgument::prove(ck, &decomm.B, &S.B, &comm.comm_B, r, transcript)?; - let (arg_C, u_w_vec_C) = - SparseEvaluationArgument::prove(ck, &decomm.C, &S.C, &comm.comm_C, r, transcript)?; - - let u_w_vec = { - let mut u_w_vec = u_w_vec_A; - u_w_vec.extend(u_w_vec_B); - u_w_vec.extend(u_w_vec_C); - u_w_vec - }; - - Ok(( - SparkEvaluationArgument { - arg_A, - arg_B, - arg_C, - }, - u_w_vec, - )) - } - - /// verifies an evaluation of R1CS matrices viewed as polynomials - fn verify( - comm: &Self::Commitment, - r: &(&[G::Scalar], &[G::Scalar]), - arg: &Self::EvaluationArgument, - transcript: &mut G::TE, - ) -> Result<(G::Scalar, G::Scalar, G::Scalar, Vec>), NovaError> { - let (eval_A, u_vec_A) = arg.arg_A.verify(&comm.comm_A, r, transcript)?; - let (eval_B, u_vec_B) = arg.arg_B.verify(&comm.comm_B, r, transcript)?; - let (eval_C, u_vec_C) = arg.arg_C.verify(&comm.comm_C, r, transcript)?; - - let u_vec = { - let mut u_vec = u_vec_A; - u_vec.extend(u_vec_B); - u_vec.extend(u_vec_C); - u_vec - }; - - Ok((eval_A, eval_B, eval_C, u_vec)) - } -} diff --git a/src/spartan/spark/product.rs b/src/spartan/spark/product.rs deleted file mode 100644 index 6967ce0..0000000 --- a/src/spartan/spark/product.rs +++ /dev/null @@ -1,477 +0,0 @@ -use crate::{ - errors::NovaError, - spartan::{ - math::Math, - polynomial::{EqPolynomial, MultilinearPolynomial}, - sumcheck::{CompressedUniPoly, SumcheckProof, UniPoly}, - }, - traits::{Group, TranscriptEngineTrait}, -}; -use core::marker::PhantomData; -use ff::{Field, PrimeField}; -use serde::{Deserialize, Serialize}; - -pub(crate) struct IdentityPolynomial { - ell: usize, - _p: PhantomData, -} - -impl IdentityPolynomial { - pub fn new(ell: usize) -> Self { - IdentityPolynomial { - ell, - _p: Default::default(), - } - } - - pub fn evaluate(&self, r: &[Scalar]) -> Scalar { - assert_eq!(self.ell, r.len()); - (0..self.ell) - .map(|i| Scalar::from(2_usize.pow((self.ell - i - 1) as u32) as u64) * r[i]) - .fold(Scalar::zero(), |acc, item| acc + item) - } -} - -impl SumcheckProof { - pub fn prove_cubic( - claim: &G::Scalar, - num_rounds: usize, - poly_A: &mut MultilinearPolynomial, - poly_B: &mut MultilinearPolynomial, - poly_C: &mut MultilinearPolynomial, - comb_func: F, - transcript: &mut G::TE, - ) -> Result<(Self, Vec, Vec), NovaError> - where - F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar, - { - let mut e = *claim; - let mut r: Vec = Vec::new(); - let mut cubic_polys: Vec> = Vec::new(); - for _j in 0..num_rounds { - let mut eval_point_0 = G::Scalar::zero(); - let mut eval_point_2 = G::Scalar::zero(); - let mut eval_point_3 = G::Scalar::zero(); - - let len = poly_A.len() / 2; - for i in 0..len { - // eval 0: bound_func is A(low) - eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]); - - // eval 2: bound_func is -A(low) + 2*A(high) - let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i]; - let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i]; - let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i]; - eval_point_2 += comb_func( - &poly_A_bound_point, - &poly_B_bound_point, - &poly_C_bound_point, - ); - - // eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2) - let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i]; - let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i]; - let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i]; - - eval_point_3 += comb_func( - &poly_A_bound_point, - &poly_B_bound_point, - &poly_C_bound_point, - ); - } - - let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3]; - let poly = UniPoly::from_evals(&evals); - - // append the prover's message to the transcript - transcript.absorb(b"p", &poly); - - //derive the verifier's challenge for the next round - let r_i = transcript.squeeze(b"c")?; - r.push(r_i); - - // bound all tables to the verifier's challenege - poly_A.bound_poly_var_top(&r_i); - poly_B.bound_poly_var_top(&r_i); - poly_C.bound_poly_var_top(&r_i); - e = poly.evaluate(&r_i); - cubic_polys.push(poly.compress()); - } - - Ok(( - Self::new(cubic_polys), - r, - vec![poly_A[0], poly_B[0], poly_C[0]], - )) - } - - pub fn prove_cubic_batched( - claim: &G::Scalar, - num_rounds: usize, - poly_vec: ( - &mut Vec<&mut MultilinearPolynomial>, - &mut Vec<&mut MultilinearPolynomial>, - &mut MultilinearPolynomial, - ), - coeffs: &[G::Scalar], - comb_func: F, - transcript: &mut G::TE, - ) -> Result< - ( - Self, - Vec, - (Vec, Vec, G::Scalar), - ), - NovaError, - > - where - F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar, - { - let (poly_A_vec, poly_B_vec, poly_C) = poly_vec; - - let mut e = *claim; - let mut r: Vec = Vec::new(); - let mut cubic_polys: Vec> = Vec::new(); - - for _j in 0..num_rounds { - let mut evals: Vec<(G::Scalar, G::Scalar, G::Scalar)> = Vec::new(); - - for (poly_A, poly_B) in poly_A_vec.iter().zip(poly_B_vec.iter()) { - let mut eval_point_0 = G::Scalar::zero(); - let mut eval_point_2 = G::Scalar::zero(); - let mut eval_point_3 = G::Scalar::zero(); - - let len = poly_A.len() / 2; - for i in 0..len { - // eval 0: bound_func is A(low) - eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]); - - // eval 2: bound_func is -A(low) + 2*A(high) - let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i]; - let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i]; - let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i]; - eval_point_2 += comb_func( - &poly_A_bound_point, - &poly_B_bound_point, - &poly_C_bound_point, - ); - - // eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2) - let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i]; - let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i]; - let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i]; - - eval_point_3 += comb_func( - &poly_A_bound_point, - &poly_B_bound_point, - &poly_C_bound_point, - ); - } - - evals.push((eval_point_0, eval_point_2, eval_point_3)); - } - - let evals_combined_0 = (0..evals.len()) - .map(|i| evals[i].0 * coeffs[i]) - .fold(G::Scalar::zero(), |acc, item| acc + item); - let evals_combined_2 = (0..evals.len()) - .map(|i| evals[i].1 * coeffs[i]) - .fold(G::Scalar::zero(), |acc, item| acc + item); - let evals_combined_3 = (0..evals.len()) - .map(|i| evals[i].2 * coeffs[i]) - .fold(G::Scalar::zero(), |acc, item| acc + item); - - let evals = vec![ - evals_combined_0, - e - evals_combined_0, - evals_combined_2, - evals_combined_3, - ]; - let poly = UniPoly::from_evals(&evals); - - // append the prover's message to the transcript - transcript.absorb(b"p", &poly); - - // derive the verifier's challenge for the next round - let r_i = transcript.squeeze(b"c")?; - r.push(r_i); - - // bound all tables to the verifier's challenege - for (poly_A, poly_B) in poly_A_vec.iter_mut().zip(poly_B_vec.iter_mut()) { - poly_A.bound_poly_var_top(&r_i); - poly_B.bound_poly_var_top(&r_i); - } - poly_C.bound_poly_var_top(&r_i); - - e = poly.evaluate(&r_i); - cubic_polys.push(poly.compress()); - } - - let poly_A_final = (0..poly_A_vec.len()).map(|i| poly_A_vec[i][0]).collect(); - let poly_B_final = (0..poly_B_vec.len()).map(|i| poly_B_vec[i][0]).collect(); - let claims_prod = (poly_A_final, poly_B_final, poly_C[0]); - - Ok((SumcheckProof::new(cubic_polys), r, claims_prod)) - } -} - -#[derive(Debug)] -pub struct ProductArgumentInputs { - left_vec: Vec>, - right_vec: Vec>, -} - -impl ProductArgumentInputs { - fn compute_layer( - inp_left: &MultilinearPolynomial, - inp_right: &MultilinearPolynomial, - ) -> ( - MultilinearPolynomial, - MultilinearPolynomial, - ) { - let len = inp_left.len() + inp_right.len(); - let outp_left = (0..len / 4) - .map(|i| inp_left[i] * inp_right[i]) - .collect::>(); - let outp_right = (len / 4..len / 2) - .map(|i| inp_left[i] * inp_right[i]) - .collect::>(); - - ( - MultilinearPolynomial::new(outp_left), - MultilinearPolynomial::new(outp_right), - ) - } - - pub fn new(poly: &MultilinearPolynomial) -> Self { - let mut left_vec: Vec> = Vec::new(); - let mut right_vec: Vec> = Vec::new(); - let num_layers = poly.len().log_2(); - let (outp_left, outp_right) = poly.split(poly.len() / 2); - - left_vec.push(outp_left); - right_vec.push(outp_right); - - for i in 0..num_layers - 1 { - let (outp_left, outp_right) = - ProductArgumentInputs::::compute_layer(&left_vec[i], &right_vec[i]); - left_vec.push(outp_left); - right_vec.push(outp_right); - } - - Self { - left_vec, - right_vec, - } - } - - pub fn evaluate(&self) -> G::Scalar { - let len = self.left_vec.len(); - assert_eq!(self.left_vec[len - 1].get_num_vars(), 0); - assert_eq!(self.right_vec[len - 1].get_num_vars(), 0); - self.left_vec[len - 1][0] * self.right_vec[len - 1][0] - } -} -#[derive(Clone, Debug, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct LayerProofBatched { - proof: SumcheckProof, - claims_prod_left: Vec, - claims_prod_right: Vec, -} - -impl LayerProofBatched { - pub fn verify( - &self, - claim: G::Scalar, - num_rounds: usize, - degree_bound: usize, - transcript: &mut G::TE, - ) -> Result<(G::Scalar, Vec), NovaError> { - self - .proof - .verify(claim, num_rounds, degree_bound, transcript) - } -} - -#[derive(Clone, Debug, Serialize, Deserialize)] -#[serde(bound = "")] -pub(crate) struct ProductArgumentBatched { - proof: Vec>, -} - -impl ProductArgumentBatched { - pub fn prove( - poly_vec: &[&MultilinearPolynomial], - transcript: &mut G::TE, - ) -> Result<(Self, Vec, Vec), NovaError> { - let mut prod_circuit_vec: Vec<_> = (0..poly_vec.len()) - .map(|i| ProductArgumentInputs::::new(poly_vec[i])) - .collect(); - - let mut proof_layers: Vec> = Vec::new(); - let num_layers = prod_circuit_vec[0].left_vec.len(); - let evals = (0..prod_circuit_vec.len()) - .map(|i| prod_circuit_vec[i].evaluate()) - .collect::>(); - - let mut claims_to_verify = evals.clone(); - let mut rand = Vec::new(); - for layer_id in (0..num_layers).rev() { - let len = prod_circuit_vec[0].left_vec[layer_id].len() - + prod_circuit_vec[0].right_vec[layer_id].len(); - - let mut poly_C = MultilinearPolynomial::new(EqPolynomial::new(rand.clone()).evals()); - assert_eq!(poly_C.len(), len / 2); - - let num_rounds_prod = poly_C.len().log_2(); - let comb_func_prod = |poly_A_comp: &G::Scalar, - poly_B_comp: &G::Scalar, - poly_C_comp: &G::Scalar| - -> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp }; - - let mut poly_A_batched: Vec<&mut MultilinearPolynomial> = Vec::new(); - let mut poly_B_batched: Vec<&mut MultilinearPolynomial> = Vec::new(); - for prod_circuit in prod_circuit_vec.iter_mut() { - poly_A_batched.push(&mut prod_circuit.left_vec[layer_id]); - poly_B_batched.push(&mut prod_circuit.right_vec[layer_id]) - } - let poly_vec = (&mut poly_A_batched, &mut poly_B_batched, &mut poly_C); - - // produce a fresh set of coeffs and a joint claim - let coeff_vec = { - let s = transcript.squeeze(b"r")?; - let mut s_vec = vec![s]; - for i in 1..claims_to_verify.len() { - s_vec.push(s_vec[i - 1] * s); - } - s_vec - }; - - let claim = (0..claims_to_verify.len()) - .map(|i| claims_to_verify[i] * coeff_vec[i]) - .fold(G::Scalar::zero(), |acc, item| acc + item); - - let (proof, rand_prod, claims_prod) = SumcheckProof::prove_cubic_batched( - &claim, - num_rounds_prod, - poly_vec, - &coeff_vec, - comb_func_prod, - transcript, - )?; - - let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod; - - let v = { - let mut v = claims_prod_left.clone(); - v.extend(&claims_prod_right); - v - }; - transcript.absorb(b"p", &v.as_slice()); - - // produce a random challenge to condense two claims into a single claim - let r_layer = transcript.squeeze(b"c")?; - - claims_to_verify = (0..prod_circuit_vec.len()) - .map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i])) - .collect::>(); - - let mut ext = vec![r_layer]; - ext.extend(rand_prod); - rand = ext; - - proof_layers.push(LayerProofBatched { - proof, - claims_prod_left, - claims_prod_right, - }); - } - - Ok(( - ProductArgumentBatched { - proof: proof_layers, - }, - evals, - rand, - )) - } - - pub fn verify( - &self, - claims_prod_vec: &[G::Scalar], - len: usize, - transcript: &mut G::TE, - ) -> Result<(Vec, Vec), NovaError> { - let num_layers = len.log_2(); - - let mut rand: Vec = Vec::new(); - if self.proof.len() != num_layers { - return Err(NovaError::InvalidProductProof); - } - - let mut claims_to_verify = claims_prod_vec.to_owned(); - for (num_rounds, i) in (0..num_layers).enumerate() { - // produce random coefficients, one for each instance - let coeff_vec = { - let s = transcript.squeeze(b"r")?; - let mut s_vec = vec![s]; - for i in 1..claims_to_verify.len() { - s_vec.push(s_vec[i - 1] * s); - } - s_vec - }; - - // produce a joint claim - let claim = (0..claims_to_verify.len()) - .map(|i| claims_to_verify[i] * coeff_vec[i]) - .fold(G::Scalar::zero(), |acc, item| acc + item); - - let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript)?; - - let claims_prod_left = &self.proof[i].claims_prod_left; - let claims_prod_right = &self.proof[i].claims_prod_right; - if claims_prod_left.len() != claims_prod_vec.len() - || claims_prod_right.len() != claims_prod_vec.len() - { - return Err(NovaError::InvalidProductProof); - } - - let v = { - let mut v = claims_prod_left.clone(); - v.extend(claims_prod_right); - v - }; - transcript.absorb(b"p", &v.as_slice()); - - if rand.len() != rand_prod.len() { - return Err(NovaError::InvalidProductProof); - } - - let eq: G::Scalar = (0..rand.len()) - .map(|i| { - rand[i] * rand_prod[i] + (G::Scalar::one() - rand[i]) * (G::Scalar::one() - rand_prod[i]) - }) - .fold(G::Scalar::one(), |acc, item| acc * item); - let claim_expected: G::Scalar = (0..claims_prod_vec.len()) - .map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq)) - .fold(G::Scalar::zero(), |acc, item| acc + item); - - if claim_expected != claim_last { - return Err(NovaError::InvalidProductProof); - } - - // produce a random challenge - let r_layer = transcript.squeeze(b"c")?; - - claims_to_verify = (0..claims_prod_left.len()) - .map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i])) - .collect::>(); - - let mut ext = vec![r_layer]; - ext.extend(rand_prod); - rand = ext; - } - Ok((claims_to_verify, rand)) - } -} diff --git a/src/spartan/spark/sparse.rs b/src/spartan/spark/sparse.rs deleted file mode 100644 index 89afbd0..0000000 --- a/src/spartan/spark/sparse.rs +++ /dev/null @@ -1,724 +0,0 @@ -#![allow(clippy::type_complexity)] -#![allow(clippy::too_many_arguments)] -#![allow(clippy::needless_range_loop)] -use crate::{ - errors::NovaError, - spartan::{ - math::Math, - polynomial::{EqPolynomial, MultilinearPolynomial}, - spark::product::{IdentityPolynomial, ProductArgumentBatched}, - PolyEvalInstance, PolyEvalWitness, SumcheckProof, - }, - traits::{commitment::CommitmentEngineTrait, Group, TranscriptEngineTrait, TranscriptReprTrait}, - Commitment, CommitmentKey, -}; -use ff::Field; -use rayon::prelude::*; -use serde::{Deserialize, Serialize}; - -/// A type that holds a sparse polynomial in dense representation -#[derive(Clone, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct SparsePolynomial { - ell: (usize, usize), // number of variables in each dimension - - // dense representation - row: Vec, - col: Vec, - val: Vec, - - // timestamp polynomials - row_read_ts: Vec, - row_audit_ts: Vec, - col_read_ts: Vec, - col_audit_ts: Vec, -} - -/// A type that holds a commitment to a sparse polynomial -#[derive(Clone, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct SparsePolynomialCommitment { - ell: (usize, usize), // number of variables - size: usize, // size of the dense representation - - // commitments to the dense representation - comm_row: Commitment, - comm_col: Commitment, - comm_val: Commitment, - - // commitments to the timestamp polynomials - comm_row_read_ts: Commitment, - comm_row_audit_ts: Commitment, - comm_col_read_ts: Commitment, - comm_col_audit_ts: Commitment, -} - -impl TranscriptReprTrait for SparsePolynomialCommitment { - fn to_transcript_bytes(&self) -> Vec { - [ - self.comm_row, - self.comm_col, - self.comm_val, - self.comm_row_read_ts, - self.comm_row_audit_ts, - self.comm_col_read_ts, - self.comm_col_audit_ts, - ] - .as_slice() - .to_transcript_bytes() - } -} - -impl SparsePolynomial { - pub fn new(ell: (usize, usize), M: &[(usize, usize, G::Scalar)]) -> Self { - let mut row = M.iter().map(|(r, _, _)| *r).collect::>(); - let mut col = M.iter().map(|(_, c, _)| *c).collect::>(); - let mut val = M.iter().map(|(_, _, v)| *v).collect::>(); - - let num_ops = M.len().next_power_of_two(); - let num_cells_row = ell.0.pow2(); - let num_cells_col = ell.1.pow2(); - row.resize(num_ops, 0usize); - col.resize(num_ops, 0usize); - val.resize(num_ops, G::Scalar::zero()); - - // timestamp calculation routine - let timestamp_calc = - |num_ops: usize, num_cells: usize, addr_trace: &[usize]| -> (Vec, Vec) { - let mut read_ts = vec![0usize; num_ops]; - let mut audit_ts = vec![0usize; num_cells]; - - assert!(num_ops >= addr_trace.len()); - for i in 0..addr_trace.len() { - let addr = addr_trace[i]; - assert!(addr < num_cells); - let r_ts = audit_ts[addr]; - read_ts[i] = r_ts; - - let w_ts = r_ts + 1; - audit_ts[addr] = w_ts; - } - (read_ts, audit_ts) - }; - - // timestamp polynomials for row - let (row_read_ts, row_audit_ts) = timestamp_calc(num_ops, num_cells_row, &row); - let (col_read_ts, col_audit_ts) = timestamp_calc(num_ops, num_cells_col, &col); - - let to_vec_scalar = |v: &[usize]| -> Vec { - (0..v.len()) - .map(|i| G::Scalar::from(v[i] as u64)) - .collect::>() - }; - - Self { - ell, - // dense representation - row: to_vec_scalar(&row), - col: to_vec_scalar(&col), - val, - - // timestamp polynomials - row_read_ts: to_vec_scalar(&row_read_ts), - row_audit_ts: to_vec_scalar(&row_audit_ts), - col_read_ts: to_vec_scalar(&col_read_ts), - col_audit_ts: to_vec_scalar(&col_audit_ts), - } - } - - pub fn commit(&self, ck: &CommitmentKey) -> SparsePolynomialCommitment { - let comm_vec: Vec> = [ - &self.row, - &self.col, - &self.val, - &self.row_read_ts, - &self.row_audit_ts, - &self.col_read_ts, - &self.col_audit_ts, - ] - .par_iter() - .map(|v| G::CE::commit(ck, v)) - .collect(); - - SparsePolynomialCommitment { - ell: self.ell, - size: self.row.len(), - comm_row: comm_vec[0], - comm_col: comm_vec[1], - comm_val: comm_vec[2], - comm_row_read_ts: comm_vec[3], - comm_row_audit_ts: comm_vec[4], - comm_col_read_ts: comm_vec[5], - comm_col_audit_ts: comm_vec[6], - } - } - - pub fn multi_evaluate( - M_vec: &[&[(usize, usize, G::Scalar)]], - r_x: &[G::Scalar], - r_y: &[G::Scalar], - ) -> Vec { - let evaluate_with_table = - |M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar { - (0..M.len()) - .collect::>() - .par_iter() - .map(|&i| { - let (row, col, val) = M[i]; - T_x[row] * T_y[col] * val - }) - .reduce(G::Scalar::zero, |acc, x| acc + x) - }; - - let (T_x, T_y) = rayon::join( - || EqPolynomial::new(r_x.to_vec()).evals(), - || EqPolynomial::new(r_y.to_vec()).evals(), - ); - - (0..M_vec.len()) - .collect::>() - .par_iter() - .map(|&i| evaluate_with_table(M_vec[i], &T_x, &T_y)) - .collect() - } - - fn evaluation_oracles( - M: &[(usize, usize, G::Scalar)], - r_x: &[G::Scalar], - r_y: &[G::Scalar], - ) -> ( - Vec, - Vec, - Vec, - Vec, - ) { - let evaluation_oracles_with_table = |M: &[(usize, usize, G::Scalar)], - T_x: &[G::Scalar], - T_y: &[G::Scalar]| - -> (Vec, Vec) { - (0..M.len()) - .collect::>() - .par_iter() - .map(|&i| { - let (row, col, _val) = M[i]; - (T_x[row], T_y[col]) - }) - .collect::>() - .into_par_iter() - .unzip() - }; - - let (T_x, T_y) = rayon::join( - || EqPolynomial::new(r_x.to_vec()).evals(), - || EqPolynomial::new(r_y.to_vec()).evals(), - ); - - let (mut E_row, mut E_col) = evaluation_oracles_with_table(M, &T_x, &T_y); - - // resize the returned vectors - E_row.resize(M.len().next_power_of_two(), T_x[0]); // we place T_x[0] since resized row is appended with 0s - E_col.resize(M.len().next_power_of_two(), T_y[0]); - (E_row, E_col, T_x, T_y) - } -} - -#[derive(Clone, Debug, Serialize, Deserialize)] -#[serde(bound = "")] -pub struct SparseEvaluationArgument { - // claimed evaluation - eval: G::Scalar, - - // oracles - comm_E_row: Commitment, - comm_E_col: Commitment, - - // proof of correct evaluation wrt oracles - sc_proof_eval: SumcheckProof, - eval_E_row: G::Scalar, - eval_E_col: G::Scalar, - eval_val: G::Scalar, - - // proof that E_row is well-formed - eval_init_row: G::Scalar, - eval_read_row: G::Scalar, - eval_write_row: G::Scalar, - eval_audit_row: G::Scalar, - eval_init_col: G::Scalar, - eval_read_col: G::Scalar, - eval_write_col: G::Scalar, - eval_audit_col: G::Scalar, - sc_prod_init_audit_row: ProductArgumentBatched, - sc_prod_read_write_row_col: ProductArgumentBatched, - sc_prod_init_audit_col: ProductArgumentBatched, - eval_row: G::Scalar, - eval_row_read_ts: G::Scalar, - eval_E_row2: G::Scalar, - eval_row_audit_ts: G::Scalar, - eval_col: G::Scalar, - eval_col_read_ts: G::Scalar, - eval_E_col2: G::Scalar, - eval_col_audit_ts: G::Scalar, -} - -impl SparseEvaluationArgument { - pub fn prove( - ck: &CommitmentKey, - poly: &SparsePolynomial, - sparse: &[(usize, usize, G::Scalar)], - comm: &SparsePolynomialCommitment, - r: &(&[G::Scalar], &[G::Scalar]), - transcript: &mut G::TE, - ) -> Result<(Self, Vec<(PolyEvalWitness, PolyEvalInstance)>), NovaError> { - let (r_x, r_y) = r; - let eval = SparsePolynomial::::multi_evaluate(&[sparse], r_x, r_y)[0]; - - // keep track of evaluation claims - let mut w_u_vec: Vec<(PolyEvalWitness, PolyEvalInstance)> = Vec::new(); - - // compute oracles to prove the correctness of `eval` - let (E_row, E_col, T_x, T_y) = SparsePolynomial::::evaluation_oracles(sparse, r_x, r_y); - let val = poly.val.clone(); - - // commit to the two oracles - let comm_E_row = G::CE::commit(ck, &E_row); - let comm_E_col = G::CE::commit(ck, &E_col); - - // absorb the commitments and the claimed evaluation - transcript.absorb(b"E", &vec![comm_E_row, comm_E_col].as_slice()); - transcript.absorb(b"e", &eval); - - let comb_func_eval = |poly_A_comp: &G::Scalar, - poly_B_comp: &G::Scalar, - poly_C_comp: &G::Scalar| - -> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp }; - let (sc_proof_eval, r_eval, claims_eval) = SumcheckProof::::prove_cubic( - &eval, - E_row.len().log_2(), // number of rounds - &mut MultilinearPolynomial::new(E_row.clone()), - &mut MultilinearPolynomial::new(E_col.clone()), - &mut MultilinearPolynomial::new(val.clone()), - comb_func_eval, - transcript, - )?; - - // prove evaluations of E_row, E_col and val at r_eval - let rho = transcript.squeeze(b"r")?; - let comm_joint = comm_E_row + comm_E_col * rho + comm.comm_val * rho * rho; - let eval_joint = claims_eval[0] + rho * claims_eval[1] + rho * rho * claims_eval[2]; - let poly_eval = E_row - .iter() - .zip(E_col.iter()) - .zip(val.iter()) - .map(|((a, b), c)| *a + rho * *b + rho * rho * *c) - .collect::>(); - - // add the claim to prove for later - w_u_vec.push(( - PolyEvalWitness { p: poly_eval }, - PolyEvalInstance { - c: comm_joint, - x: r_eval, - e: eval_joint, - }, - )); - - // we now need to prove that E_row and E_col are well-formed - // we use memory checking: H(INIT) * H(WS) =? H(RS) * H(FINAL) - let gamma_1 = transcript.squeeze(b"g1")?; - let gamma_2 = transcript.squeeze(b"g2")?; - - let gamma_1_sqr = gamma_1 * gamma_1; - let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar { - (*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2 - }; - - let init_row = (0..T_x.len()) - .map(|i| hash_func(&G::Scalar::from(i as u64), &T_x[i], &G::Scalar::zero())) - .collect::>(); - let read_row = (0..E_row.len()) - .map(|i| hash_func(&poly.row[i], &E_row[i], &poly.row_read_ts[i])) - .collect::>(); - let write_row = (0..E_row.len()) - .map(|i| { - hash_func( - &poly.row[i], - &E_row[i], - &(poly.row_read_ts[i] + G::Scalar::one()), - ) - }) - .collect::>(); - let audit_row = (0..T_x.len()) - .map(|i| hash_func(&G::Scalar::from(i as u64), &T_x[i], &poly.row_audit_ts[i])) - .collect::>(); - let init_col = (0..T_y.len()) - .map(|i| hash_func(&G::Scalar::from(i as u64), &T_y[i], &G::Scalar::zero())) - .collect::>(); - let read_col = (0..E_col.len()) - .map(|i| hash_func(&poly.col[i], &E_col[i], &poly.col_read_ts[i])) - .collect::>(); - let write_col = (0..E_col.len()) - .map(|i| { - hash_func( - &poly.col[i], - &E_col[i], - &(poly.col_read_ts[i] + G::Scalar::one()), - ) - }) - .collect::>(); - let audit_col = (0..T_y.len()) - .map(|i| hash_func(&G::Scalar::from(i as u64), &T_y[i], &poly.col_audit_ts[i])) - .collect::>(); - - let (sc_prod_init_audit_row, eval_init_audit_row, r_init_audit_row) = - ProductArgumentBatched::prove( - &[ - &MultilinearPolynomial::new(init_row), - &MultilinearPolynomial::new(audit_row), - ], - transcript, - )?; - - assert_eq!(init_col.len(), audit_col.len()); - let (sc_prod_init_audit_col, eval_init_audit_col, r_init_audit_col) = - ProductArgumentBatched::prove( - &[ - &MultilinearPolynomial::new(init_col), - &MultilinearPolynomial::new(audit_col), - ], - transcript, - )?; - - assert_eq!(read_row.len(), write_row.len()); - assert_eq!(read_row.len(), read_col.len()); - assert_eq!(read_row.len(), write_col.len()); - - let (sc_prod_read_write_row_col, eval_read_write_row_col, r_read_write_row_col) = - ProductArgumentBatched::prove( - &[ - &MultilinearPolynomial::new(read_row), - &MultilinearPolynomial::new(write_row), - &MultilinearPolynomial::new(read_col), - &MultilinearPolynomial::new(write_col), - ], - transcript, - )?; - - // row-related claims of polynomial evaluations to aid the final check of the sum-check - let eval_row = MultilinearPolynomial::evaluate_with(&poly.row, &r_read_write_row_col); - let eval_row_read_ts = - MultilinearPolynomial::evaluate_with(&poly.row_read_ts, &r_read_write_row_col); - let eval_E_row2 = MultilinearPolynomial::evaluate_with(&E_row, &r_read_write_row_col); - let eval_row_audit_ts = - MultilinearPolynomial::evaluate_with(&poly.row_audit_ts, &r_init_audit_row); - - // col-related claims of polynomial evaluations to aid the final check of the sum-check - let eval_col = MultilinearPolynomial::evaluate_with(&poly.col, &r_read_write_row_col); - let eval_col_read_ts = - MultilinearPolynomial::evaluate_with(&poly.col_read_ts, &r_read_write_row_col); - let eval_E_col2 = MultilinearPolynomial::evaluate_with(&E_col, &r_read_write_row_col); - let eval_col_audit_ts = - MultilinearPolynomial::evaluate_with(&poly.col_audit_ts, &r_init_audit_col); - - // we can batch prove the first three claims - transcript.absorb( - b"e", - &[ - eval_row, - eval_row_read_ts, - eval_E_row2, - eval_col, - eval_col_read_ts, - eval_E_col2, - ] - .as_slice(), - ); - let c = transcript.squeeze(b"c")?; - let eval_joint = eval_row - + c * eval_row_read_ts - + c * c * eval_E_row2 - + c * c * c * eval_col - + c * c * c * c * eval_col_read_ts - + c * c * c * c * c * eval_E_col2; - let comm_joint = comm.comm_row - + comm.comm_row_read_ts * c - + comm_E_row * c * c - + comm.comm_col * c * c * c - + comm.comm_col_read_ts * c * c * c * c - + comm_E_col * c * c * c * c * c; - let poly_joint = poly - .row - .iter() - .zip(poly.row_read_ts.iter()) - .zip(E_row.into_iter()) - .zip(poly.col.iter()) - .zip(poly.col_read_ts.iter()) - .zip(E_col.into_iter()) - .map(|(((((x, y), z), m), n), q)| { - *x + c * y + c * c * z + c * c * c * m + c * c * c * c * n + c * c * c * c * c * q - }) - .collect::>(); - - // add the claim to prove for later - w_u_vec.push(( - PolyEvalWitness { p: poly_joint }, - PolyEvalInstance { - c: comm_joint, - x: r_read_write_row_col, - e: eval_joint, - }, - )); - - transcript.absorb(b"a", &eval_row_audit_ts); // add evaluation to transcript, commitment is already in - w_u_vec.push(( - PolyEvalWitness { - p: poly.row_audit_ts.clone(), - }, - PolyEvalInstance { - c: comm.comm_row_audit_ts, - x: r_init_audit_row, - e: eval_row_audit_ts, - }, - )); - - transcript.absorb(b"a", &eval_col_audit_ts); // add evaluation to transcript, commitment is already in - w_u_vec.push(( - PolyEvalWitness { - p: poly.col_audit_ts.clone(), - }, - PolyEvalInstance { - c: comm.comm_col_audit_ts, - x: r_init_audit_col, - e: eval_col_audit_ts, - }, - )); - - let eval_arg = Self { - // claimed evaluation - eval, - - // oracles - comm_E_row, - comm_E_col, - - // proof of correct evaluation wrt oracles - sc_proof_eval, - eval_E_row: claims_eval[0], - eval_E_col: claims_eval[1], - eval_val: claims_eval[2], - - // proof that E_row and E_row are well-formed - eval_init_row: eval_init_audit_row[0], - eval_read_row: eval_read_write_row_col[0], - eval_write_row: eval_read_write_row_col[1], - eval_audit_row: eval_init_audit_row[1], - eval_init_col: eval_init_audit_col[0], - eval_read_col: eval_read_write_row_col[2], - eval_write_col: eval_read_write_row_col[3], - eval_audit_col: eval_init_audit_col[1], - sc_prod_init_audit_row, - sc_prod_read_write_row_col, - sc_prod_init_audit_col, - eval_row, - eval_row_read_ts, - eval_E_row2, - eval_row_audit_ts, - eval_col, - eval_col_read_ts, - eval_E_col2, - eval_col_audit_ts, - }; - - Ok((eval_arg, w_u_vec)) - } - - pub fn verify( - &self, - comm: &SparsePolynomialCommitment, - r: &(&[G::Scalar], &[G::Scalar]), - transcript: &mut G::TE, - ) -> Result<(G::Scalar, Vec>), NovaError> { - let (r_x, r_y) = r; - - // keep track of evaluation claims - let mut u_vec: Vec> = Vec::new(); - - // append the transcript and scalar - transcript.absorb(b"E", &vec![self.comm_E_row, self.comm_E_col].as_slice()); - transcript.absorb(b"e", &self.eval); - - // (1) verify the correct evaluation of sparse polynomial - let (claim_eval_final, r_eval) = self.sc_proof_eval.verify( - self.eval, - comm.size.next_power_of_two().log_2(), - 3, - transcript, - )?; - // verify the last step of the sum-check - if claim_eval_final != self.eval_E_row * self.eval_E_col * self.eval_val { - return Err(NovaError::InvalidSumcheckProof); - } - - // prove evaluations of E_row, E_col and val at r_eval - let rho = transcript.squeeze(b"r")?; - let comm_joint = self.comm_E_row + self.comm_E_col * rho + comm.comm_val * rho * rho; - let eval_joint = self.eval_E_row + rho * self.eval_E_col + rho * rho * self.eval_val; - - // add the claim to prove for later - u_vec.push(PolyEvalInstance { - c: comm_joint, - x: r_eval, - e: eval_joint, - }); - - // (2) verify if E_row and E_col are well formed - let gamma_1 = transcript.squeeze(b"g1")?; - let gamma_2 = transcript.squeeze(b"g2")?; - - // hash function - let gamma_1_sqr = gamma_1 * gamma_1; - let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar { - (*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2 - }; - - // check the required multiset relationship - // row - if self.eval_init_row * self.eval_write_row != self.eval_read_row * self.eval_audit_row { - return Err(NovaError::InvalidMultisetProof); - } - // col - if self.eval_init_col * self.eval_write_col != self.eval_read_col * self.eval_audit_col { - return Err(NovaError::InvalidMultisetProof); - } - - // verify the product proofs - let (claim_init_audit_row, r_init_audit_row) = self.sc_prod_init_audit_row.verify( - &[self.eval_init_row, self.eval_audit_row], - comm.ell.0.pow2(), - transcript, - )?; - let (claim_init_audit_col, r_init_audit_col) = self.sc_prod_init_audit_col.verify( - &[self.eval_init_col, self.eval_audit_col], - comm.ell.1.pow2(), - transcript, - )?; - let (claim_read_write_row_col, r_read_write_row_col) = self.sc_prod_read_write_row_col.verify( - &[ - self.eval_read_row, - self.eval_write_row, - self.eval_read_col, - self.eval_write_col, - ], - comm.size, - transcript, - )?; - - // finish the final step of the three sum-checks - let (claim_init_expected_row, claim_audit_expected_row) = { - let addr = IdentityPolynomial::new(r_init_audit_row.len()).evaluate(&r_init_audit_row); - let val = EqPolynomial::new(r_x.to_vec()).evaluate(&r_init_audit_row); - - ( - hash_func(&addr, &val, &G::Scalar::zero()), - hash_func(&addr, &val, &self.eval_row_audit_ts), - ) - }; - - let (claim_read_expected_row, claim_write_expected_row) = { - ( - hash_func(&self.eval_row, &self.eval_E_row2, &self.eval_row_read_ts), - hash_func( - &self.eval_row, - &self.eval_E_row2, - &(self.eval_row_read_ts + G::Scalar::one()), - ), - ) - }; - - // multiset check for the row - if claim_init_expected_row != claim_init_audit_row[0] - || claim_audit_expected_row != claim_init_audit_row[1] - || claim_read_expected_row != claim_read_write_row_col[0] - || claim_write_expected_row != claim_read_write_row_col[1] - { - return Err(NovaError::InvalidSumcheckProof); - } - - let (claim_init_expected_col, claim_audit_expected_col) = { - let addr = IdentityPolynomial::new(r_init_audit_col.len()).evaluate(&r_init_audit_col); - let val = EqPolynomial::new(r_y.to_vec()).evaluate(&r_init_audit_col); - - ( - hash_func(&addr, &val, &G::Scalar::zero()), - hash_func(&addr, &val, &self.eval_col_audit_ts), - ) - }; - - let (claim_read_expected_col, claim_write_expected_col) = { - ( - hash_func(&self.eval_col, &self.eval_E_col2, &self.eval_col_read_ts), - hash_func( - &self.eval_col, - &self.eval_E_col2, - &(self.eval_col_read_ts + G::Scalar::one()), - ), - ) - }; - - // multiset check for the col - if claim_init_expected_col != claim_init_audit_col[0] - || claim_audit_expected_col != claim_init_audit_col[1] - || claim_read_expected_col != claim_read_write_row_col[2] - || claim_write_expected_col != claim_read_write_row_col[3] - { - return Err(NovaError::InvalidSumcheckProof); - } - - transcript.absorb( - b"e", - &[ - self.eval_row, - self.eval_row_read_ts, - self.eval_E_row2, - self.eval_col, - self.eval_col_read_ts, - self.eval_E_col2, - ] - .as_slice(), - ); - let c = transcript.squeeze(b"c")?; - let eval_joint = self.eval_row - + c * self.eval_row_read_ts - + c * c * self.eval_E_row2 - + c * c * c * self.eval_col - + c * c * c * c * self.eval_col_read_ts - + c * c * c * c * c * self.eval_E_col2; - let comm_joint = comm.comm_row - + comm.comm_row_read_ts * c - + self.comm_E_row * c * c - + comm.comm_col * c * c * c - + comm.comm_col_read_ts * c * c * c * c - + self.comm_E_col * c * c * c * c * c; - - u_vec.push(PolyEvalInstance { - c: comm_joint, - x: r_read_write_row_col, - e: eval_joint, - }); - - transcript.absorb(b"a", &self.eval_row_audit_ts); // add evaluation to transcript, commitment is already in - u_vec.push(PolyEvalInstance { - c: comm.comm_row_audit_ts, - x: r_init_audit_row, - e: self.eval_row_audit_ts, - }); - - transcript.absorb(b"a", &self.eval_col_audit_ts); // add evaluation to transcript, commitment is already in - u_vec.push(PolyEvalInstance { - c: comm.comm_col_audit_ts, - x: r_init_audit_col, - e: self.eval_col_audit_ts, - }); - - Ok((self.eval, u_vec)) - } -} diff --git a/src/spartan/sumcheck.rs b/src/spartan/sumcheck.rs index a80e56b..83bbcdc 100644 --- a/src/spartan/sumcheck.rs +++ b/src/spartan/sumcheck.rs @@ -197,6 +197,94 @@ impl SumcheckProof { Ok((SumcheckProof::new(quad_polys), r, claims_prod)) } + pub fn prove_cubic( + claim: &G::Scalar, + num_rounds: usize, + poly_A: &mut MultilinearPolynomial, + poly_B: &mut MultilinearPolynomial, + poly_C: &mut MultilinearPolynomial, + comb_func: F, + transcript: &mut G::TE, + ) -> Result<(Self, Vec, Vec), NovaError> + where + F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar + Sync, + { + let mut r: Vec = Vec::new(); + let mut polys: Vec> = Vec::new(); + let mut claim_per_round = *claim; + + for _ in 0..num_rounds { + let poly = { + let len = poly_A.len() / 2; + + // Make an iterator returning the contributions to the evaluations + let (eval_point_0, eval_point_2, eval_point_3) = (0..len) + .into_par_iter() + .map(|i| { + // eval 0: bound_func is A(low) + let eval_point_0 = comb_func(&poly_A[i], &poly_B[i], &poly_C[i]); + + // eval 2: bound_func is -A(low) + 2*A(high) + let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i]; + let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i]; + let eval_point_2 = comb_func( + &poly_A_bound_point, + &poly_B_bound_point, + &poly_C_bound_point, + ); + + // eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2) + let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i]; + let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i]; + let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i]; + let eval_point_3 = comb_func( + &poly_A_bound_point, + &poly_B_bound_point, + &poly_C_bound_point, + ); + (eval_point_0, eval_point_2, eval_point_3) + }) + .reduce( + || (G::Scalar::zero(), G::Scalar::zero(), G::Scalar::zero()), + |a, b| (a.0 + b.0, a.1 + b.1, a.2 + b.2), + ); + + let evals = vec![ + eval_point_0, + claim_per_round - eval_point_0, + eval_point_2, + eval_point_3, + ]; + UniPoly::from_evals(&evals) + }; + + // append the prover's message to the transcript + transcript.absorb(b"p", &poly); + + //derive the verifier's challenge for the next round + let r_i = transcript.squeeze(b"c")?; + r.push(r_i); + polys.push(poly.compress()); + + // Set up next round + claim_per_round = poly.evaluate(&r_i); + + // bound all tables to the verifier's challenege + poly_A.bound_poly_var_top(&r_i); + poly_B.bound_poly_var_top(&r_i); + poly_C.bound_poly_var_top(&r_i); + } + + Ok(( + SumcheckProof { + compressed_polys: polys, + }, + r, + vec![poly_A[0], poly_B[0], poly_C[0]], + )) + } + pub fn prove_cubic_with_additive_term( claim: &G::Scalar, num_rounds: usize,