mirror of
https://github.com/arnaucube/Nova.git
synced 2026-01-10 16:11:29 +01:00
Support non-determinism with a minimal API (#85)
* support non-determinism with small changes to the interface * update benches to use the new API * add an example that exercises non-deterministic advice at each step of recursion * tiny rename * Address clippy; update version
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "nova-snark"
|
||||
version = "0.6.1"
|
||||
version = "0.7.0"
|
||||
authors = ["Srinath Setty <srinath@microsoft.com>"]
|
||||
edition = "2021"
|
||||
description = "Recursive zkSNARKs without trusted setup"
|
||||
|
||||
@@ -10,6 +10,31 @@ type G2 = pasta_curves::vesta::Point;
|
||||
type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
|
||||
type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct TrivialTestCircuit<F: PrimeField> {
|
||||
_p: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
|
||||
where
|
||||
F: PrimeField,
|
||||
{
|
||||
fn synthesize<CS: ConstraintSystem<F>>(
|
||||
&self,
|
||||
_cs: &mut CS,
|
||||
z: AllocatedNum<F>,
|
||||
) -> Result<AllocatedNum<F>, SynthesisError> {
|
||||
Ok(z)
|
||||
}
|
||||
|
||||
fn compute(&self, z: &F) -> F {
|
||||
*z
|
||||
}
|
||||
}
|
||||
|
||||
type C1 = TrivialTestCircuit<<G1 as Group>::Scalar>;
|
||||
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
|
||||
|
||||
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
|
||||
use core::marker::PhantomData;
|
||||
use criterion::*;
|
||||
@@ -18,8 +43,7 @@ use std::time::Duration;
|
||||
|
||||
fn compressed_snark_benchmark(c: &mut Criterion) {
|
||||
let num_samples = 10;
|
||||
let num_steps = 3;
|
||||
bench_compressed_snark(c, num_samples, num_steps);
|
||||
bench_compressed_snark(c, num_samples);
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
@@ -34,16 +58,12 @@ targets = compressed_snark_benchmark
|
||||
|
||||
criterion_main!(compressed_snark);
|
||||
|
||||
fn bench_compressed_snark(c: &mut Criterion, num_samples: usize, num_steps: usize) {
|
||||
fn bench_compressed_snark(c: &mut Criterion, num_samples: usize) {
|
||||
let mut group = c.benchmark_group("CompressedSNARK");
|
||||
group.sample_size(num_samples);
|
||||
|
||||
// Produce public parameters
|
||||
let pp = PublicParams::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
@@ -53,15 +73,40 @@ fn bench_compressed_snark(c: &mut Criterion, num_samples: usize, num_steps: usiz
|
||||
);
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove(
|
||||
&pp,
|
||||
num_steps,
|
||||
<G1 as Group>::Scalar::zero(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark = res.unwrap();
|
||||
let num_steps = 3;
|
||||
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
||||
|
||||
for i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
||||
// verify the recursive snark at each step of recursion
|
||||
let res = recursive_snark_unwrapped.verify(
|
||||
&pp,
|
||||
i + 1,
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// set the running variable for the next iteration
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
}
|
||||
|
||||
// Bench time to produce a compressed SNARK
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
group.bench_function("Prove", |b| {
|
||||
b.iter(|| {
|
||||
assert!(CompressedSNARK::<_, _, _, _, S1, S2>::prove(
|
||||
@@ -92,25 +137,3 @@ fn bench_compressed_snark(c: &mut Criterion, num_samples: usize, num_steps: usiz
|
||||
|
||||
group.finish();
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct TrivialTestCircuit<F: PrimeField> {
|
||||
_p: PhantomData<F>,
|
||||
}
|
||||
|
||||
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
|
||||
where
|
||||
F: PrimeField,
|
||||
{
|
||||
fn synthesize<CS: ConstraintSystem<F>>(
|
||||
&self,
|
||||
_cs: &mut CS,
|
||||
z: AllocatedNum<F>,
|
||||
) -> Result<AllocatedNum<F>, SynthesisError> {
|
||||
Ok(z)
|
||||
}
|
||||
|
||||
fn compute(&self, z: &F) -> F {
|
||||
*z
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,87 +8,6 @@ use nova_snark::{
|
||||
type G1 = pasta_curves::pallas::Point;
|
||||
type G2 = pasta_curves::vesta::Point;
|
||||
|
||||
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
|
||||
use core::marker::PhantomData;
|
||||
use criterion::*;
|
||||
use ff::PrimeField;
|
||||
use std::time::Duration;
|
||||
|
||||
fn recursive_snark_benchmark(c: &mut Criterion) {
|
||||
let num_samples = 10;
|
||||
for num_steps in 1..10 {
|
||||
bench_recursive_snark(c, num_samples, num_steps);
|
||||
}
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().warm_up_time(Duration::from_millis(3000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = recursive_snark;
|
||||
config = set_duration();
|
||||
targets = recursive_snark_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(recursive_snark);
|
||||
|
||||
fn bench_recursive_snark(c: &mut Criterion, num_samples: usize, num_steps: usize) {
|
||||
let mut group = c.benchmark_group(format!("RecursiveSNARK-NumSteps-{}", num_steps));
|
||||
group.sample_size(num_samples);
|
||||
// Produce public parameters
|
||||
let pp = PublicParams::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
);
|
||||
// Bench time to produce a recursive SNARK
|
||||
group.bench_function("Prove", |b| {
|
||||
b.iter(|| {
|
||||
// produce a recursive SNARK
|
||||
assert!(RecursiveSNARK::prove(
|
||||
black_box(&pp),
|
||||
black_box(num_steps),
|
||||
black_box(<G1 as Group>::Scalar::zero()),
|
||||
black_box(<G2 as Group>::Scalar::zero()),
|
||||
)
|
||||
.is_ok());
|
||||
})
|
||||
});
|
||||
let res = RecursiveSNARK::prove(
|
||||
&pp,
|
||||
num_steps,
|
||||
<G1 as Group>::Scalar::zero(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark = res.unwrap();
|
||||
|
||||
// Benchmark the verification time
|
||||
let name = "Verify";
|
||||
group.bench_function(name, |b| {
|
||||
b.iter(|| {
|
||||
assert!(black_box(&recursive_snark)
|
||||
.verify(
|
||||
black_box(&pp),
|
||||
black_box(num_steps),
|
||||
black_box(<G1 as Group>::Scalar::zero()),
|
||||
black_box(<G2 as Group>::Scalar::zero()),
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct TrivialTestCircuit<F: PrimeField> {
|
||||
_p: PhantomData<F>,
|
||||
@@ -110,3 +29,117 @@ where
|
||||
*z
|
||||
}
|
||||
}
|
||||
|
||||
type C1 = TrivialTestCircuit<<G1 as Group>::Scalar>;
|
||||
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
|
||||
|
||||
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
|
||||
use core::marker::PhantomData;
|
||||
use criterion::*;
|
||||
use ff::PrimeField;
|
||||
use std::time::Duration;
|
||||
|
||||
fn recursive_snark_benchmark(c: &mut Criterion) {
|
||||
let num_samples = 10;
|
||||
bench_recursive_snark(c, num_samples);
|
||||
}
|
||||
|
||||
fn set_duration() -> Criterion {
|
||||
Criterion::default().warm_up_time(Duration::from_millis(3000))
|
||||
}
|
||||
|
||||
criterion_group! {
|
||||
name = recursive_snark;
|
||||
config = set_duration();
|
||||
targets = recursive_snark_benchmark
|
||||
}
|
||||
|
||||
criterion_main!(recursive_snark);
|
||||
|
||||
fn bench_recursive_snark(c: &mut Criterion, num_samples: usize) {
|
||||
let mut group = c.benchmark_group("RecursiveSNARK".to_string());
|
||||
group.sample_size(num_samples);
|
||||
|
||||
// Produce public parameters
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
);
|
||||
|
||||
// Bench time to produce a recursive SNARK;
|
||||
// we execute a certain number of warm-up steps since executing
|
||||
// the first step is cheaper than other steps owing to the presence of
|
||||
// a lot of zeros in the satisfying assignment
|
||||
let num_warmup_steps = 10;
|
||||
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
||||
|
||||
for i in 0..num_warmup_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
||||
// verify the recursive snark at each step of recursion
|
||||
let res = recursive_snark_unwrapped.verify(
|
||||
&pp,
|
||||
i + 1,
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// set the running variable for the next iteration
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
}
|
||||
|
||||
group.bench_function("Prove", |b| {
|
||||
b.iter(|| {
|
||||
// produce a recursive SNARK for a step of the recursion
|
||||
assert!(RecursiveSNARK::prove_step(
|
||||
black_box(&pp),
|
||||
black_box(recursive_snark.clone()),
|
||||
black_box(TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
}),
|
||||
black_box(TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
}),
|
||||
black_box(<G1 as Group>::Scalar::zero()),
|
||||
black_box(<G2 as Group>::Scalar::zero()),
|
||||
)
|
||||
.is_ok());
|
||||
})
|
||||
});
|
||||
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// Benchmark the verification time
|
||||
let name = "Verify";
|
||||
group.bench_function(name, |b| {
|
||||
b.iter(|| {
|
||||
assert!(black_box(&recursive_snark)
|
||||
.verify(
|
||||
black_box(&pp),
|
||||
black_box(num_warmup_steps),
|
||||
black_box(<G1 as Group>::Scalar::zero()),
|
||||
black_box(<G2 as Group>::Scalar::zero()),
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
});
|
||||
group.finish();
|
||||
}
|
||||
|
||||
667
src/lib.rs
667
src/lib.rs
@@ -60,10 +60,10 @@ where
|
||||
r1cs_gens_secondary: R1CSGens<G2>,
|
||||
r1cs_shape_secondary: R1CSShape<G2>,
|
||||
r1cs_shape_padded_secondary: R1CSShape<G2>,
|
||||
c_primary: C1,
|
||||
c_secondary: C2,
|
||||
params_primary: NIFSVerifierCircuitParams,
|
||||
params_secondary: NIFSVerifierCircuitParams,
|
||||
nifs_params_primary: NIFSVerifierCircuitParams,
|
||||
nifs_params_secondary: NIFSVerifierCircuitParams,
|
||||
_p_c1: PhantomData<C1>,
|
||||
_p_c2: PhantomData<C2>,
|
||||
}
|
||||
|
||||
impl<G1, G2, C1, C2> PublicParams<G1, G2, C1, C2>
|
||||
@@ -75,8 +75,8 @@ where
|
||||
{
|
||||
/// Create a new `PublicParams`
|
||||
pub fn setup(c_primary: C1, c_secondary: C2) -> Self {
|
||||
let params_primary = NIFSVerifierCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
|
||||
let params_secondary = NIFSVerifierCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
|
||||
let nifs_params_primary = NIFSVerifierCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
|
||||
let nifs_params_secondary = NIFSVerifierCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
|
||||
|
||||
let ro_consts_primary: HashFuncConstants<G1> = HashFuncConstants::<G1>::new();
|
||||
let ro_consts_secondary: HashFuncConstants<G2> = HashFuncConstants::<G2>::new();
|
||||
@@ -89,9 +89,9 @@ where
|
||||
|
||||
// Initialize gens for the primary
|
||||
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
|
||||
params_primary.clone(),
|
||||
nifs_params_primary.clone(),
|
||||
None,
|
||||
c_primary.clone(),
|
||||
c_primary,
|
||||
ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let mut cs: ShapeCS<G1> = ShapeCS::new();
|
||||
@@ -101,9 +101,9 @@ where
|
||||
|
||||
// Initialize gens for the secondary
|
||||
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
|
||||
params_secondary.clone(),
|
||||
nifs_params_secondary.clone(),
|
||||
None,
|
||||
c_secondary.clone(),
|
||||
c_secondary,
|
||||
ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let mut cs: ShapeCS<G2> = ShapeCS::new();
|
||||
@@ -122,15 +122,16 @@ where
|
||||
r1cs_gens_secondary,
|
||||
r1cs_shape_secondary,
|
||||
r1cs_shape_padded_secondary,
|
||||
c_primary,
|
||||
c_secondary,
|
||||
params_primary,
|
||||
params_secondary,
|
||||
nifs_params_primary,
|
||||
nifs_params_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A SNARK that proves the correct execution of an incremental computation
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct RecursiveSNARK<G1, G2, C1, C2>
|
||||
where
|
||||
G1: Group<Base = <G2 as Group>::Scalar>,
|
||||
@@ -146,8 +147,9 @@ where
|
||||
r_U_secondary: RelaxedR1CSInstance<G2>,
|
||||
l_w_secondary: R1CSWitness<G2>,
|
||||
l_u_secondary: R1CSInstance<G2>,
|
||||
zn_primary: G1::Scalar,
|
||||
zn_secondary: G2::Scalar,
|
||||
i: usize,
|
||||
zi_primary: G1::Scalar,
|
||||
zi_secondary: G2::Scalar,
|
||||
_p_c1: PhantomData<C1>,
|
||||
_p_c2: PhantomData<C2>,
|
||||
}
|
||||
@@ -159,175 +161,191 @@ where
|
||||
C1: StepCircuit<G1::Scalar>,
|
||||
C2: StepCircuit<G2::Scalar>,
|
||||
{
|
||||
/// Create a new `RecursiveSNARK`
|
||||
pub fn prove(
|
||||
/// Create a new `RecursiveSNARK` (or updates the provided `RecursiveSNARK`)
|
||||
/// by executing a step of the incremental computation
|
||||
pub fn prove_step(
|
||||
pp: &PublicParams<G1, G2, C1, C2>,
|
||||
num_steps: usize,
|
||||
recursive_snark: Option<Self>,
|
||||
c_primary: C1,
|
||||
c_secondary: C2,
|
||||
z0_primary: G1::Scalar,
|
||||
z0_secondary: G2::Scalar,
|
||||
) -> Result<Self, NovaError> {
|
||||
if num_steps == 0 {
|
||||
return Err(NovaError::InvalidNumSteps);
|
||||
match recursive_snark {
|
||||
None => {
|
||||
// base case for the primary
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NIFSVerifierCircuitInputs<G2> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_secondary.get_digest(),
|
||||
G1::Scalar::zero(),
|
||||
z0_primary,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
|
||||
pp.nifs_params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
let (u_primary, w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// base case for the secondary
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_primary.get_digest(),
|
||||
G2::Scalar::zero(),
|
||||
z0_secondary,
|
||||
None,
|
||||
None,
|
||||
Some(u_primary.clone()),
|
||||
None,
|
||||
);
|
||||
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
|
||||
pp.nifs_params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
let (u_secondary, w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// IVC proof for the primary circuit
|
||||
let l_w_primary = w_primary;
|
||||
let l_u_primary = u_primary;
|
||||
let r_W_primary =
|
||||
RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
|
||||
let r_U_primary = RelaxedR1CSInstance::from_r1cs_instance(
|
||||
&pp.r1cs_gens_primary,
|
||||
&pp.r1cs_shape_primary,
|
||||
&l_u_primary,
|
||||
);
|
||||
|
||||
// IVC proof of the secondary circuit
|
||||
let l_w_secondary = w_secondary;
|
||||
let l_u_secondary = u_secondary;
|
||||
let r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
|
||||
let r_U_secondary =
|
||||
RelaxedR1CSInstance::<G2>::default(&pp.r1cs_gens_secondary, &pp.r1cs_shape_secondary);
|
||||
|
||||
// Outputs of the two circuits thus far
|
||||
let zi_primary = c_primary.compute(&z0_primary);
|
||||
let zi_secondary = c_secondary.compute(&z0_secondary);
|
||||
|
||||
Ok(Self {
|
||||
r_W_primary,
|
||||
r_U_primary,
|
||||
l_w_primary,
|
||||
l_u_primary,
|
||||
r_W_secondary,
|
||||
r_U_secondary,
|
||||
l_w_secondary,
|
||||
l_u_secondary,
|
||||
i: 1_usize,
|
||||
zi_primary,
|
||||
zi_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
})
|
||||
}
|
||||
Some(r_snark) => {
|
||||
// fold the secondary circuit's instance
|
||||
let (nifs_secondary, (r_U_secondary, r_W_secondary)) = NIFS::prove(
|
||||
&pp.r1cs_gens_secondary,
|
||||
&pp.ro_consts_secondary,
|
||||
&pp.r1cs_shape_secondary,
|
||||
&r_snark.r_U_secondary,
|
||||
&r_snark.r_W_secondary,
|
||||
&r_snark.l_u_secondary,
|
||||
&r_snark.l_w_secondary,
|
||||
)?;
|
||||
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NIFSVerifierCircuitInputs<G2> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_secondary.get_digest(),
|
||||
G1::Scalar::from(r_snark.i as u64),
|
||||
z0_primary,
|
||||
Some(r_snark.zi_primary),
|
||||
Some(r_snark.r_U_secondary.clone()),
|
||||
Some(r_snark.l_u_secondary.clone()),
|
||||
Some(nifs_secondary.comm_T.decompress()?),
|
||||
);
|
||||
|
||||
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
|
||||
pp.nifs_params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
|
||||
let (l_u_primary, l_w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// fold the primary circuit's instance
|
||||
let (nifs_primary, (r_U_primary, r_W_primary)) = NIFS::prove(
|
||||
&pp.r1cs_gens_primary,
|
||||
&pp.ro_consts_primary,
|
||||
&pp.r1cs_shape_primary,
|
||||
&r_snark.r_U_primary,
|
||||
&r_snark.r_W_primary,
|
||||
&l_u_primary,
|
||||
&l_w_primary,
|
||||
)?;
|
||||
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_primary.get_digest(),
|
||||
G2::Scalar::from(r_snark.i as u64),
|
||||
z0_secondary,
|
||||
Some(r_snark.zi_secondary),
|
||||
Some(r_snark.r_U_primary.clone()),
|
||||
Some(l_u_primary.clone()),
|
||||
Some(nifs_primary.comm_T.decompress()?),
|
||||
);
|
||||
|
||||
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
|
||||
pp.nifs_params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
|
||||
let (l_u_secondary, l_w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// update the running instances and witnesses
|
||||
let zi_primary = c_primary.compute(&r_snark.zi_primary);
|
||||
let zi_secondary = c_secondary.compute(&r_snark.zi_secondary);
|
||||
|
||||
Ok(Self {
|
||||
r_W_primary,
|
||||
r_U_primary,
|
||||
l_w_primary,
|
||||
l_u_primary,
|
||||
r_W_secondary,
|
||||
r_U_secondary,
|
||||
l_w_secondary,
|
||||
l_u_secondary,
|
||||
i: r_snark.i + 1,
|
||||
zi_primary,
|
||||
zi_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Execute the base case for the primary
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NIFSVerifierCircuitInputs<G2> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_secondary.get_digest(),
|
||||
G1::Scalar::zero(),
|
||||
z0_primary,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
|
||||
pp.params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
pp.c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
let (u_primary, w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// Execute the base case for the secondary
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_primary.get_digest(),
|
||||
G2::Scalar::zero(),
|
||||
z0_secondary,
|
||||
None,
|
||||
None,
|
||||
Some(u_primary.clone()),
|
||||
None,
|
||||
);
|
||||
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
|
||||
pp.params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
pp.c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
let (u_secondary, w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// execute the remaining steps, alternating between G1 and G2
|
||||
let mut l_w_primary = w_primary;
|
||||
let mut l_u_primary = u_primary;
|
||||
let mut r_W_primary =
|
||||
RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
|
||||
let mut r_U_primary = RelaxedR1CSInstance::from_r1cs_instance(
|
||||
&pp.r1cs_gens_primary,
|
||||
&pp.r1cs_shape_primary,
|
||||
&l_u_primary,
|
||||
);
|
||||
|
||||
let mut r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
|
||||
let mut r_U_secondary =
|
||||
RelaxedR1CSInstance::<G2>::default(&pp.r1cs_gens_secondary, &pp.r1cs_shape_secondary);
|
||||
let mut l_w_secondary = w_secondary;
|
||||
let mut l_u_secondary = u_secondary;
|
||||
|
||||
let mut z_next_primary = z0_primary;
|
||||
let mut z_next_secondary = z0_secondary;
|
||||
z_next_primary = pp.c_primary.compute(&z_next_primary);
|
||||
z_next_secondary = pp.c_secondary.compute(&z_next_secondary);
|
||||
|
||||
for i in 1..num_steps {
|
||||
// fold the secondary circuit's instance
|
||||
let (nifs_secondary, (r_U_next_secondary, r_W_next_secondary)) = NIFS::prove(
|
||||
&pp.r1cs_gens_secondary,
|
||||
&pp.ro_consts_secondary,
|
||||
&pp.r1cs_shape_secondary,
|
||||
&r_U_secondary,
|
||||
&r_W_secondary,
|
||||
&l_u_secondary,
|
||||
&l_w_secondary,
|
||||
)?;
|
||||
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NIFSVerifierCircuitInputs<G2> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_secondary.get_digest(),
|
||||
G1::Scalar::from(i as u64),
|
||||
z0_primary,
|
||||
Some(z_next_primary),
|
||||
Some(r_U_secondary),
|
||||
Some(l_u_secondary),
|
||||
Some(nifs_secondary.comm_T.decompress()?),
|
||||
);
|
||||
|
||||
let circuit_primary: NIFSVerifierCircuit<G2, C1> = NIFSVerifierCircuit::new(
|
||||
pp.params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
pp.c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
|
||||
(l_u_primary, l_w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.r1cs_gens_primary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// fold the primary circuit's instance
|
||||
let (nifs_primary, (r_U_next_primary, r_W_next_primary)) = NIFS::prove(
|
||||
&pp.r1cs_gens_primary,
|
||||
&pp.ro_consts_primary,
|
||||
&pp.r1cs_shape_primary,
|
||||
&r_U_primary.clone(),
|
||||
&r_W_primary.clone(),
|
||||
&l_u_primary.clone(),
|
||||
&l_w_primary.clone(),
|
||||
)?;
|
||||
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NIFSVerifierCircuitInputs<G1> = NIFSVerifierCircuitInputs::new(
|
||||
pp.r1cs_shape_primary.get_digest(),
|
||||
G2::Scalar::from(i as u64),
|
||||
z0_secondary,
|
||||
Some(z_next_secondary),
|
||||
Some(r_U_primary.clone()),
|
||||
Some(l_u_primary.clone()),
|
||||
Some(nifs_primary.comm_T.decompress()?),
|
||||
);
|
||||
|
||||
let circuit_secondary: NIFSVerifierCircuit<G1, C2> = NIFSVerifierCircuit::new(
|
||||
pp.params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
pp.c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
|
||||
(l_u_secondary, l_w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.r1cs_gens_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// update the running instances and witnesses
|
||||
r_U_secondary = r_U_next_secondary;
|
||||
r_W_secondary = r_W_next_secondary;
|
||||
r_U_primary = r_U_next_primary;
|
||||
r_W_primary = r_W_next_primary;
|
||||
z_next_primary = pp.c_primary.compute(&z_next_primary);
|
||||
z_next_secondary = pp.c_secondary.compute(&z_next_secondary);
|
||||
}
|
||||
|
||||
Ok(Self {
|
||||
r_W_primary,
|
||||
r_U_primary,
|
||||
l_w_primary,
|
||||
l_u_primary,
|
||||
r_W_secondary,
|
||||
r_U_secondary,
|
||||
l_w_secondary,
|
||||
l_u_secondary,
|
||||
zn_primary: z_next_primary,
|
||||
zn_secondary: z_next_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Verify the correctness of the `RecursiveSNARK`
|
||||
@@ -343,6 +361,11 @@ where
|
||||
return Err(NovaError::ProofVerifyError);
|
||||
}
|
||||
|
||||
// check if the provided proof has executed num_steps
|
||||
if self.i != num_steps {
|
||||
return Err(NovaError::ProofVerifyError);
|
||||
}
|
||||
|
||||
// check if the (relaxed) R1CS instances have two public outputs
|
||||
if self.l_u_primary.X.len() != 2
|
||||
|| self.l_u_secondary.X.len() != 2
|
||||
@@ -358,14 +381,14 @@ where
|
||||
hasher.absorb(scalar_as_base::<G2>(pp.r1cs_shape_secondary.get_digest()));
|
||||
hasher.absorb(G1::Scalar::from(num_steps as u64));
|
||||
hasher.absorb(z0_primary);
|
||||
hasher.absorb(self.zn_primary);
|
||||
hasher.absorb(self.zi_primary);
|
||||
self.r_U_secondary.absorb_in_ro(&mut hasher);
|
||||
|
||||
let mut hasher2 = <G1 as Group>::HashFunc::new(pp.ro_consts_primary.clone());
|
||||
hasher2.absorb(scalar_as_base::<G1>(pp.r1cs_shape_primary.get_digest()));
|
||||
hasher2.absorb(G2::Scalar::from(num_steps as u64));
|
||||
hasher2.absorb(z0_secondary);
|
||||
hasher2.absorb(self.zn_secondary);
|
||||
hasher2.absorb(self.zi_secondary);
|
||||
self.r_U_primary.absorb_in_ro(&mut hasher2);
|
||||
|
||||
(hasher.get_hash(), hasher2.get_hash())
|
||||
@@ -423,11 +446,12 @@ where
|
||||
res_r_secondary?;
|
||||
res_l_secondary?;
|
||||
|
||||
Ok((self.zn_primary, self.zn_secondary))
|
||||
Ok((self.zi_primary, self.zi_secondary))
|
||||
}
|
||||
}
|
||||
|
||||
/// A SNARK that proves the knowledge of a valid `RecursiveSNARK`
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct CompressedSNARK<G1, G2, C1, C2, S1, S2>
|
||||
where
|
||||
G1: Group<Base = <G2 as Group>::Scalar>,
|
||||
@@ -533,8 +557,8 @@ where
|
||||
nifs_secondary,
|
||||
f_W_snark_secondary: f_W_snark_secondary?,
|
||||
|
||||
zn_primary: recursive_snark.zn_primary,
|
||||
zn_secondary: recursive_snark.zn_secondary,
|
||||
zn_primary: recursive_snark.zi_primary,
|
||||
zn_secondary: recursive_snark.zi_secondary,
|
||||
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
@@ -720,10 +744,18 @@ mod tests {
|
||||
},
|
||||
);
|
||||
|
||||
let num_steps = 1;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove(
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
3,
|
||||
None,
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
<G1 as Group>::Scalar::zero(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
@@ -733,7 +765,7 @@ mod tests {
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
3,
|
||||
num_steps,
|
||||
<G1 as Group>::Scalar::zero(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
@@ -742,32 +774,60 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_ivc_nontrivial() {
|
||||
let circuit_primary = TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
};
|
||||
let circuit_secondary = CubicCircuit {
|
||||
_p: Default::default(),
|
||||
};
|
||||
|
||||
// produce public parameters
|
||||
let pp = PublicParams::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
CubicCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
);
|
||||
>::setup(circuit_primary.clone(), circuit_secondary.clone());
|
||||
|
||||
let num_steps = 3;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove(
|
||||
&pp,
|
||||
num_steps,
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark = res.unwrap();
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
|
||||
for i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
||||
// verify the recursive snark at each step of recursion
|
||||
let res = recursive_snark_unwrapped.verify(
|
||||
&pp,
|
||||
i + 1,
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// set the running variable for the next iteration
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
@@ -795,32 +855,48 @@ mod tests {
|
||||
|
||||
#[test]
|
||||
fn test_ivc_nontrivial_with_compression() {
|
||||
let circuit_primary = TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
};
|
||||
let circuit_secondary = CubicCircuit {
|
||||
_p: Default::default(),
|
||||
};
|
||||
|
||||
// produce public parameters
|
||||
let pp = PublicParams::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
CubicCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
);
|
||||
>::setup(circuit_primary.clone(), circuit_secondary.clone());
|
||||
|
||||
let num_steps = 3;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove(
|
||||
&pp,
|
||||
num_steps,
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark = res.unwrap();
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
|
||||
for _i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
recursive_snark = Some(res.unwrap());
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
@@ -860,6 +936,147 @@ mod tests {
|
||||
assert!(res.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ivc_nondet_with_compression() {
|
||||
// y is a non-deterministic advice representing the fifth root of the input at a step.
|
||||
#[derive(Clone, Debug)]
|
||||
struct FifthRootCheckingCircuit<F: PrimeField> {
|
||||
y: F,
|
||||
}
|
||||
|
||||
impl<F> FifthRootCheckingCircuit<F>
|
||||
where
|
||||
F: PrimeField,
|
||||
{
|
||||
fn new(num_steps: usize) -> (F, Vec<Self>) {
|
||||
let mut powers = Vec::new();
|
||||
let rng = &mut rand::rngs::OsRng;
|
||||
let mut seed = F::random(rng);
|
||||
for _i in 0..num_steps + 1 {
|
||||
let mut power = seed;
|
||||
power = power.square();
|
||||
power = power.square();
|
||||
power *= seed;
|
||||
|
||||
powers.push(Self { y: power });
|
||||
|
||||
seed = power;
|
||||
}
|
||||
|
||||
// reverse the powers to get roots
|
||||
let roots = powers.into_iter().rev().collect::<Vec<Self>>();
|
||||
(roots[0].y, roots[1..].to_vec())
|
||||
}
|
||||
}
|
||||
|
||||
impl<F> StepCircuit<F> for FifthRootCheckingCircuit<F>
|
||||
where
|
||||
F: PrimeField,
|
||||
{
|
||||
fn synthesize<CS: ConstraintSystem<F>>(
|
||||
&self,
|
||||
cs: &mut CS,
|
||||
z: AllocatedNum<F>,
|
||||
) -> Result<AllocatedNum<F>, SynthesisError> {
|
||||
let x = z;
|
||||
|
||||
// we allocate a variable and set it to the provided non-derministic advice.
|
||||
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(self.y))?;
|
||||
|
||||
// We now check if y = x^{1/5} by checking if y^5 = x
|
||||
let y_sq = y.square(cs.namespace(|| "y_sq"))?;
|
||||
let y_quad = y_sq.square(cs.namespace(|| "y_quad"))?;
|
||||
let y_pow_5 = y_quad.mul(cs.namespace(|| "y_fifth"), &y)?;
|
||||
|
||||
cs.enforce(
|
||||
|| "y^5 = x",
|
||||
|lc| lc + y_pow_5.get_variable(),
|
||||
|lc| lc + CS::one(),
|
||||
|lc| lc + x.get_variable(),
|
||||
);
|
||||
|
||||
Ok(y)
|
||||
}
|
||||
|
||||
fn compute(&self, z: &F) -> F {
|
||||
// sanity check
|
||||
let x = *z;
|
||||
let y_pow_5 = {
|
||||
let y = self.y;
|
||||
let y_sq = y.square();
|
||||
let y_quad = y_sq.square();
|
||||
y_quad * self.y
|
||||
};
|
||||
assert_eq!(x, y_pow_5);
|
||||
|
||||
// return non-deterministic advice
|
||||
// as the output of the step
|
||||
self.y
|
||||
}
|
||||
}
|
||||
|
||||
let circuit_primary = FifthRootCheckingCircuit {
|
||||
y: <G1 as Group>::Scalar::zero(),
|
||||
};
|
||||
|
||||
let circuit_secondary = TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
};
|
||||
|
||||
// produce public parameters
|
||||
let pp = PublicParams::<
|
||||
G1,
|
||||
G2,
|
||||
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(circuit_primary, circuit_secondary.clone());
|
||||
|
||||
let num_steps = 3;
|
||||
|
||||
// produce non-deterministic advice
|
||||
let (z0_primary, roots) = FifthRootCheckingCircuit::new(num_steps);
|
||||
let z0_secondary = <G2 as Group>::Scalar::zero();
|
||||
|
||||
// produce a recursive SNARK
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
|
||||
for circuit_primary in roots.iter().take(num_steps) {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
z0_primary,
|
||||
z0_secondary,
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
recursive_snark = Some(res.unwrap());
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// produce a compressed SNARK
|
||||
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark);
|
||||
assert!(res.is_ok());
|
||||
let compressed_snark = res.unwrap();
|
||||
|
||||
// verify the compressed SNARK
|
||||
let res = compressed_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
|
||||
assert!(res.is_ok());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_ivc_base() {
|
||||
// produce public parameters
|
||||
@@ -880,9 +1097,15 @@ mod tests {
|
||||
let num_steps = 1;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove(
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
&pp,
|
||||
num_steps,
|
||||
None,
|
||||
TrivialTestCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
CubicCircuit {
|
||||
_p: Default::default(),
|
||||
},
|
||||
<G1 as Group>::Scalar::one(),
|
||||
<G2 as Group>::Scalar::zero(),
|
||||
);
|
||||
|
||||
@@ -12,6 +12,7 @@ use std::marker::PhantomData;
|
||||
|
||||
/// A SNARK that holds the proof of a step of an incremental computation
|
||||
#[allow(clippy::upper_case_acronyms)]
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct NIFS<G: Group> {
|
||||
pub(crate) comm_T: CompressedCommitment<G::CompressedGroupElement>,
|
||||
_p: PhantomData<G>,
|
||||
|
||||
Reference in New Issue
Block a user