Browse Source

spark-based commitments to R1CS matrices (#152)

* spark-based commitments to R1CS matrices

* small fixes
main
Srinath Setty 1 year ago
committed by GitHub
parent
commit
7b1bb44e45
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
20 changed files with 1758 additions and 98 deletions
  1. +1
    -1
      Cargo.toml
  2. +5
    -3
      benches/compressed-snark.rs
  3. +5
    -3
      examples/minroot.rs
  4. +1
    -2
      src/bellperson/mod.rs
  5. +6
    -10
      src/bellperson/r1cs.rs
  6. +2
    -2
      src/circuit.rs
  7. +6
    -0
      src/errors.rs
  8. +3
    -6
      src/gadgets/ecc.rs
  9. +103
    -13
      src/lib.rs
  10. +2
    -3
      src/nifs.rs
  11. +6
    -2
      src/provider/ipa_pc.rs
  12. +5
    -2
      src/r1cs.rs
  13. +30
    -0
      src/spartan/math.rs
  14. +124
    -46
      src/spartan/mod.rs
  15. +20
    -2
      src/spartan/polynomial.rs
  16. +220
    -0
      src/spartan/spark/mod.rs
  17. +477
    -0
      src/spartan/spark/product.rs
  18. +732
    -0
      src/spartan/spark/sparse.rs
  19. +6
    -2
      src/spartan/sumcheck.rs
  20. +4
    -1
      src/traits/snark.rs

+ 1
- 1
Cargo.toml

@ -1,6 +1,6 @@
[package]
name = "nova-snark"
version = "0.18.2"
version = "0.19.0"
authors = ["Srinath Setty <srinath@microsoft.com>"]
edition = "2021"
description = "Recursive zkSNARKs without trusted setup"

+ 5
- 3
benches/compressed-snark.rs

@ -17,8 +17,10 @@ type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
type EE1 = nova_snark::provider::ipa_pc::EvaluationEngine<G1>;
type EE2 = nova_snark::provider::ipa_pc::EvaluationEngine<G2>;
type S1 = nova_snark::spartan::RelaxedR1CSSNARK<G1, EE1>;
type S2 = nova_snark::spartan::RelaxedR1CSSNARK<G2, EE2>;
type CC1 = nova_snark::spartan::spark::TrivialCompComputationEngine<G1, EE1>;
type CC2 = nova_snark::spartan::spark::TrivialCompComputationEngine<G2, EE2>;
type S1 = nova_snark::spartan::RelaxedR1CSSNARK<G1, EE1, CC1>;
type S2 = nova_snark::spartan::RelaxedR1CSSNARK<G2, EE2, CC2>;
type C1 = NonTrivialTestCircuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
@ -50,7 +52,7 @@ fn bench_compressed_snark(c: &mut Criterion) {
);
// Produce prover and verifier keys for CompressedSNARK
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp);
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
// produce a recursive SNARK
let num_steps = 3;

+ 5
- 3
examples/minroot.rs

@ -256,13 +256,15 @@ fn main() {
// produce a compressed SNARK
println!("Generating a CompressedSNARK using Spartan with IPA-PC...");
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp);
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
let start = Instant::now();
type EE1 = nova_snark::provider::ipa_pc::EvaluationEngine<G1>;
type EE2 = nova_snark::provider::ipa_pc::EvaluationEngine<G2>;
type S1 = nova_snark::spartan::RelaxedR1CSSNARK<G1, EE1>;
type S2 = nova_snark::spartan::RelaxedR1CSSNARK<G2, EE2>;
type CC1 = nova_snark::spartan::spark::TrivialCompComputationEngine<G1, EE1>;
type CC2 = nova_snark::spartan::spark::TrivialCompComputationEngine<G2, EE2>;
type S1 = nova_snark::spartan::RelaxedR1CSSNARK<G1, EE1, CC1>;
type S2 = nova_snark::spartan::RelaxedR1CSSNARK<G2, EE2, CC2>;
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark);
println!(

+ 1
- 2
src/bellperson/mod.rs

@ -46,8 +46,7 @@ mod tests {
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_alloc_bit(&mut cs);
let shape = cs.r1cs_shape();
let ck = cs.commitment_key();
let (shape, ck) = cs.r1cs_shape();
// Now get the assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();

+ 6
- 10
src/bellperson/r1cs.rs

@ -22,12 +22,10 @@ pub trait NovaWitness {
) -> Result<(R1CSInstance<G>, R1CSWitness<G>), NovaError>;
}
/// `NovaShape` provides methods for acquiring `R1CSShape` and `R1CSGens` from implementers.
/// `NovaShape` provides methods for acquiring `R1CSShape` and `CommitmentKey` from implementers.
pub trait NovaShape<G: Group> {
/// Return an appropriate `R1CSShape` struct.
fn r1cs_shape(&self) -> R1CSShape<G>;
/// Return an appropriate `CommitmentKey` struct.
fn commitment_key(&self) -> CommitmentKey<G>;
/// Return an appropriate `R1CSShape` and `CommitmentKey` structs.
fn r1cs_shape(&self) -> (R1CSShape<G>, CommitmentKey<G>);
}
impl<G: Group> NovaWitness<G> for SatisfyingAssignment<G>
@ -54,7 +52,7 @@ impl NovaShape for ShapeCS
where
G::Scalar: PrimeField,
{
fn r1cs_shape(&self) -> R1CSShape<G> {
fn r1cs_shape(&self) -> (R1CSShape<G>, CommitmentKey<G>) {
let mut A: Vec<(usize, usize, G::Scalar)> = Vec::new();
let mut B: Vec<(usize, usize, G::Scalar)> = Vec::new();
let mut C: Vec<(usize, usize, G::Scalar)> = Vec::new();
@ -84,11 +82,9 @@ where
res.unwrap()
};
S
}
let ck = R1CS::<G>::commitment_key(&S);
fn commitment_key(&self) -> CommitmentKey<G> {
R1CS::<G>::commitment_key(self.num_constraints(), self.num_aux())
(S, ck)
}
}

+ 2
- 2
src/circuit.rs

@ -400,7 +400,7 @@ mod tests {
);
let mut cs: ShapeCS<G1> = ShapeCS::new();
let _ = circuit1.synthesize(&mut cs);
let (shape1, ck1) = (cs.r1cs_shape(), cs.commitment_key());
let (shape1, ck1) = cs.r1cs_shape();
assert_eq!(cs.num_constraints(), 9815);
// Initialize the shape and ck for the secondary
@ -413,7 +413,7 @@ mod tests {
);
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = circuit2.synthesize(&mut cs);
let (shape2, ck2) = (cs.r1cs_shape(), cs.commitment_key());
let (shape2, ck2) = cs.r1cs_shape();
assert_eq!(cs.num_constraints(), 10347);
// Execute the base case for the primary

+ 6
- 0
src/errors.rs

@ -44,4 +44,10 @@ pub enum NovaError {
/// returned when the transcript engine encounters an overflow of the round number
#[error("InternalTranscriptError")]
InternalTranscriptError,
/// returned when the multiset check fails
#[error("InvalidMultisetProof")]
InvalidMultisetProof,
/// returned when the product proof check fails
#[error("InvalidProductProof")]
InvalidProductProof,
}

+ 3
- 6
src/gadgets/ecc.rs

@ -975,8 +975,7 @@ mod tests {
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = synthesize_smul::<G1, _>(cs.namespace(|| "synthesize"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let ck = cs.commitment_key();
let (shape, ck) = cs.r1cs_shape();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
@ -1017,8 +1016,7 @@ mod tests {
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = synthesize_add_equal::<G1, _>(cs.namespace(|| "synthesize add equal"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let ck = cs.commitment_key();
let (shape, ck) = cs.r1cs_shape();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
@ -1063,8 +1061,7 @@ mod tests {
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = synthesize_add_negation::<G1, _>(cs.namespace(|| "synthesize add equal"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let ck = cs.commitment_key();
let (shape, ck) = cs.r1cs_shape();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G2> = SatisfyingAssignment::new();

+ 103
- 13
src/lib.rs

@ -106,7 +106,7 @@ where
);
let mut cs: ShapeCS<G1> = ShapeCS::new();
let _ = circuit_primary.synthesize(&mut cs);
let (r1cs_shape_primary, ck_primary) = (cs.r1cs_shape(), cs.commitment_key());
let (r1cs_shape_primary, ck_primary) = cs.r1cs_shape();
// Initialize ck for the secondary
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
@ -117,7 +117,7 @@ where
);
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = circuit_secondary.synthesize(&mut cs);
let (r1cs_shape_secondary, ck_secondary) = (cs.r1cs_shape(), cs.commitment_key());
let (r1cs_shape_secondary, ck_secondary) = cs.r1cs_shape();
Self {
F_arity_primary,
@ -580,12 +580,15 @@ where
/// Creates prover and verifier keys for `CompressedSNARK`
pub fn setup(
pp: &PublicParams<G1, G2, C1, C2>,
) -> (
ProverKey<G1, G2, C1, C2, S1, S2>,
VerifierKey<G1, G2, C1, C2, S1, S2>,
) {
let (pk_primary, vk_primary) = S1::setup(&pp.ck_primary, &pp.r1cs_shape_primary);
let (pk_secondary, vk_secondary) = S2::setup(&pp.ck_secondary, &pp.r1cs_shape_secondary);
) -> Result<
(
ProverKey<G1, G2, C1, C2, S1, S2>,
VerifierKey<G1, G2, C1, C2, S1, S2>,
),
NovaError,
> {
let (pk_primary, vk_primary) = S1::setup(&pp.ck_primary, &pp.r1cs_shape_primary)?;
let (pk_secondary, vk_secondary) = S2::setup(&pp.ck_secondary, &pp.r1cs_shape_secondary)?;
let pk = ProverKey {
pk_primary,
@ -607,7 +610,7 @@ where
_p_c2: Default::default(),
};
(pk, vk)
Ok((pk, vk))
}
/// Create a new `CompressedSNARK`
@ -785,8 +788,10 @@ mod tests {
type G2 = pasta_curves::vesta::Point;
type EE1 = provider::ipa_pc::EvaluationEngine<G1>;
type EE2 = provider::ipa_pc::EvaluationEngine<G2>;
type S1 = spartan::RelaxedR1CSSNARK<G1, EE1>;
type S2 = spartan::RelaxedR1CSSNARK<G2, EE2>;
type CC1 = spartan::spark::TrivialCompComputationEngine<G1, EE1>;
type CC2 = spartan::spark::TrivialCompComputationEngine<G2, EE2>;
type S1 = spartan::RelaxedR1CSSNARK<G1, EE1, CC1>;
type S2 = spartan::RelaxedR1CSSNARK<G2, EE2, CC2>;
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use ff::PrimeField;
@ -1011,7 +1016,7 @@ mod tests {
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
// produce the prover and verifier keys for compressed snark
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp);
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark);
@ -1028,6 +1033,91 @@ mod tests {
assert!(res.is_ok());
}
#[test]
fn test_ivc_nontrivial_with_spark_compression() {
let circuit_primary = TrivialTestCircuit::default();
let circuit_secondary = CubicCircuit::default();
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary.clone(), circuit_secondary.clone());
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
for _i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
// sanity: check the claimed output with a direct computation of the same
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
let mut zn_secondary_direct = vec![<G2 as Group>::Scalar::zero()];
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit::default().output(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
// run the compressed snark with Spark compiler
type CC1Prime = spartan::spark::SparkEngine<G1, EE1>;
type CC2Prime = spartan::spark::SparkEngine<G2, EE2>;
type S1Prime = spartan::RelaxedR1CSSNARK<G1, EE1, CC1Prime>;
type S2Prime = spartan::RelaxedR1CSSNARK<G2, EE2, CC2Prime>;
// produce the prover and verifier keys for compressed snark
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1Prime, S2Prime>::setup(&pp).unwrap();
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1Prime, S2Prime>::prove(&pp, &pk, &recursive_snark);
assert!(res.is_ok());
let compressed_snark = res.unwrap();
// verify the compressed SNARK
let res = compressed_snark.verify(
&vk,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
}
#[test]
fn test_ivc_nondet_with_compression() {
// y is a non-deterministic advice representing the fifth root of the input at a step.
@ -1162,7 +1252,7 @@ mod tests {
assert!(res.is_ok());
// produce the prover and verifier keys for compressed snark
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp);
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark);

+ 2
- 3
src/nifs.rs

@ -171,8 +171,7 @@ mod tests {
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_tiny_r1cs_bellperson(&mut cs, None);
let shape = cs.r1cs_shape();
let ck = cs.commitment_key();
let (shape, ck) = cs.r1cs_shape();
let ro_consts =
<<G as Group>::RO as ROTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants::new();
@ -305,7 +304,7 @@ mod tests {
};
// generate generators and ro constants
let ck = R1CS::<G>::commitment_key(num_cons, num_vars);
let ck = R1CS::<G>::commitment_key(&S);
let ro_consts =
<<G as Group>::RO as ROTrait<<G as Group>::Base, <G as Group>::Scalar>>::Constants::new();

+ 6
- 2
src/provider/ipa_pc.rs

@ -190,6 +190,8 @@ where
) -> Result<Self, NovaError> {
transcript.dom_sep(Self::protocol_name());
let (ck, _) = ck.split_at(U.b_vec.len());
if U.b_vec.len() != W.a_vec.len() {
return Err(NovaError::InvalidInputLength);
}
@ -272,7 +274,7 @@ where
// we create mutable copies of vectors and generators
let mut a_vec = W.a_vec.to_vec();
let mut b_vec = U.b_vec.to_vec();
let mut ck = ck.clone();
let mut ck = ck;
for _i in 0..(U.b_vec.len() as f64).log2() as usize {
let (L, R, a_vec_folded, b_vec_folded, ck_folded) =
prove_inner(&a_vec, &b_vec, &ck, transcript)?;
@ -300,6 +302,8 @@ where
U: &InnerProductInstance<G>,
transcript: &mut G::TE,
) -> Result<(), NovaError> {
let (ck, _) = ck.split_at(U.b_vec.len());
transcript.dom_sep(Self::protocol_name());
if U.b_vec.len() != n
|| n != (1 << self.L_vec.len())
@ -383,7 +387,7 @@ where
};
let ck_hat = {
let c = CE::<G>::commit(ck, &s).compress();
let c = CE::<G>::commit(&ck, &s).compress();
CommitmentKey::<G>::reinterpret_commitments_as_ck(&[c])?
};

+ 5
- 2
src/r1cs.rs

@ -72,8 +72,11 @@ pub struct RelaxedR1CSInstance {
impl<G: Group> R1CS<G> {
/// Samples public parameters for the specified number of constraints and variables in an R1CS
pub fn commitment_key(num_cons: usize, num_vars: usize) -> CommitmentKey<G> {
G::CE::setup(b"ck", max(num_vars, num_cons))
pub fn commitment_key(S: &R1CSShape<G>) -> CommitmentKey<G> {
let num_cons = S.num_cons;
let num_vars = S.num_vars;
let num_nz = max(max(S.A.len(), S.B.len()), S.C.len());
G::CE::setup(b"ck", max(max(num_cons, num_vars), num_nz))
}
}

+ 30
- 0
src/spartan/math.rs

@ -0,0 +1,30 @@
pub trait Math {
fn pow2(self) -> usize;
fn get_bits(self, num_bits: usize) -> Vec<bool>;
fn log_2(self) -> usize;
}
impl Math for usize {
#[inline]
fn pow2(self) -> usize {
let base: usize = 2;
base.pow(self as u32)
}
/// Returns the num_bits from n in a canonical order
fn get_bits(self, num_bits: usize) -> Vec<bool> {
(0..num_bits)
.map(|shift_amount| ((self & (1 << (num_bits - shift_amount - 1))) > 0))
.collect::<Vec<bool>>()
}
fn log_2(self) -> usize {
assert_ne!(self, 0);
if self.is_power_of_two() {
(1usize.leading_zeros() - self.leading_zeros()) as usize
} else {
(0usize.leading_zeros() - self.leading_zeros()) as usize
}
}
}

+ 124
- 46
src/spartan/mod.rs

@ -1,6 +1,8 @@
//! This module implements RelaxedR1CSSNARKTrait using Spartan that is generic
//! over the polynomial commitment and evaluation argument (i.e., a PCS)
pub mod polynomial;
mod math;
pub(crate) mod polynomial;
pub mod spark;
mod sumcheck;
use crate::{
@ -8,6 +10,7 @@ use crate::{
r1cs::{R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness},
traits::{
evaluation::EvaluationEngineTrait, snark::RelaxedR1CSSNARKTrait, Group, TranscriptEngineTrait,
TranscriptReprTrait,
},
CommitmentKey,
};
@ -18,20 +21,75 @@ use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use sumcheck::SumcheckProof;
/// A trait that defines the behavior of a computation commitment engine
pub trait CompCommitmentEngineTrait<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
/// A type that holds opening hint
type Decommitment: Clone + Send + Sync + Serialize + for<'de> Deserialize<'de>;
/// A type that holds a commitment
type Commitment: Clone
+ Send
+ Sync
+ TranscriptReprTrait<G>
+ Serialize
+ for<'de> Deserialize<'de>;
/// A type that holds an evaluation argument
type EvaluationArgument: Send + Sync + Serialize + for<'de> Deserialize<'de>;
/// commits to R1CS matrices
fn commit(
ck: &CommitmentKey<G>,
S: &R1CSShape<G>,
) -> Result<(Self::Commitment, Self::Decommitment), NovaError>;
/// proves an evaluation of R1CS matrices viewed as polynomials
fn prove(
ck: &CommitmentKey<G>,
ek: &EE::ProverKey,
S: &R1CSShape<G>,
decomm: &Self::Decommitment,
comm: &Self::Commitment,
r: &(&[G::Scalar], &[G::Scalar]),
transcript: &mut G::TE,
) -> Result<Self::EvaluationArgument, NovaError>;
/// verifies an evaluation of R1CS matrices viewed as polynomials and returns verified evaluations
fn verify(
vk: &EE::VerifierKey,
comm: &Self::Commitment,
r: &(&[G::Scalar], &[G::Scalar]),
arg: &Self::EvaluationArgument,
transcript: &mut G::TE,
) -> Result<(G::Scalar, G::Scalar, G::Scalar), NovaError>;
}
/// A type that represents the prover's key
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct ProverKey<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
pub struct ProverKey<
G: Group,
EE: EvaluationEngineTrait<G, CE = G::CE>,
CC: CompCommitmentEngineTrait<G, EE>,
> {
pk_ee: EE::ProverKey,
S: R1CSShape<G>,
decomm: CC::Decommitment,
comm: CC::Commitment,
}
/// A type that represents the verifier's key
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct VerifierKey<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
pub struct VerifierKey<
G: Group,
EE: EvaluationEngineTrait<G, CE = G::CE>,
CC: CompCommitmentEngineTrait<G, EE>,
> {
num_cons: usize,
num_vars: usize,
vk_ee: EE::VerifierKey,
S: R1CSShape<G>,
comm: CC::Commitment,
}
/// A succinct proof of knowledge of a witness to a relaxed R1CS instance
@ -39,7 +97,11 @@ pub struct VerifierKey> {
/// the commitment to a vector viewed as a polynomial commitment
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct RelaxedR1CSSNARK<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
pub struct RelaxedR1CSSNARK<
G: Group,
EE: EvaluationEngineTrait<G, CE = G::CE>,
CC: CompCommitmentEngineTrait<G, EE>,
> {
sc_proof_outer: SumcheckProof<G>,
claims_outer: (G::Scalar, G::Scalar, G::Scalar),
eval_E: G::Scalar,
@ -49,20 +111,40 @@ pub struct RelaxedR1CSSNARK>
eval_E_prime: G::Scalar,
eval_W_prime: G::Scalar,
eval_arg: EE::EvaluationArgument,
eval_arg_cc: CC::EvaluationArgument,
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> RelaxedR1CSSNARKTrait<G>
for RelaxedR1CSSNARK<G, EE>
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>, CC: CompCommitmentEngineTrait<G, EE>>
RelaxedR1CSSNARKTrait<G> for RelaxedR1CSSNARK<G, EE, CC>
{
type ProverKey = ProverKey<G, EE>;
type VerifierKey = VerifierKey<G, EE>;
type ProverKey = ProverKey<G, EE, CC>;
type VerifierKey = VerifierKey<G, EE, CC>;
fn setup(ck: &CommitmentKey<G>, S: &R1CSShape<G>) -> (Self::ProverKey, Self::VerifierKey) {
fn setup(
ck: &CommitmentKey<G>,
S: &R1CSShape<G>,
) -> Result<(Self::ProverKey, Self::VerifierKey), NovaError> {
let (pk_ee, vk_ee) = EE::setup(ck);
let pk = ProverKey { pk_ee, S: S.pad() };
let vk = VerifierKey { vk_ee, S: S.pad() };
(pk, vk)
let S = S.pad();
let (comm, decomm) = CC::commit(ck, &S)?;
let vk = VerifierKey {
num_cons: S.num_cons,
num_vars: S.num_vars,
vk_ee,
comm: comm.clone(),
};
let pk = ProverKey {
pk_ee,
S,
comm,
decomm,
};
Ok((pk, vk))
}
/// produces a succinct proof of satisfiability of a RelaxedR1CS instance
@ -81,8 +163,8 @@ impl> RelaxedR1CSSNARKTrait
assert_eq!(pk.S.num_io.next_power_of_two(), pk.S.num_io);
assert!(pk.S.num_io < pk.S.num_vars);
// append the R1CSShape and RelaxedR1CSInstance to the transcript
transcript.absorb(b"S", &pk.S);
// append the commitment to R1CS matrices and the RelaxedR1CSInstance to the transcript
transcript.absorb(b"C", &pk.comm);
transcript.absorb(b"U", U);
// compute the full satisfying assignment by concatenating W.W, U.u, and U.X
@ -209,6 +291,17 @@ impl> RelaxedR1CSSNARKTrait
&mut transcript,
)?;
// we now prove evaluations of R1CS matrices at (r_x, r_y)
let eval_arg_cc = CC::prove(
ck,
&pk.pk_ee,
&pk.S,
&pk.decomm,
&pk.comm,
&(&r_x, &r_y),
&mut transcript,
)?;
let eval_W = MultilinearPolynomial::new(W.W.clone()).evaluate(&r_y[1..]);
transcript.absorb(b"eval_W", &eval_W);
@ -231,7 +324,7 @@ impl> RelaxedR1CSSNARKTrait
let (sc_proof_batch, r_z, claims_batch) = SumcheckProof::prove_quad_sum(
&claim_batch_joint,
num_rounds_z,
&mut MultilinearPolynomial::new(EqPolynomial::new(r_x).evals()),
&mut MultilinearPolynomial::new(EqPolynomial::new(r_x.clone()).evals()),
&mut MultilinearPolynomial::new(W.E.clone()),
&mut MultilinearPolynomial::new(EqPolynomial::new(r_y[1..].to_vec()).evals()),
&mut MultilinearPolynomial::new(W.W.clone()),
@ -266,6 +359,7 @@ impl> RelaxedR1CSSNARKTrait
eval_E_prime,
eval_W_prime,
eval_arg,
eval_arg_cc,
})
}
@ -273,13 +367,13 @@ impl> RelaxedR1CSSNARKTrait
fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance<G>) -> Result<(), NovaError> {
let mut transcript = G::TE::new(b"RelaxedR1CSSNARK");
// append the R1CSShape and RelaxedR1CSInstance to the transcript
transcript.absorb(b"S", &vk.S);
// append the commitment to R1CS matrices and the RelaxedR1CSInstance to the transcript
transcript.absorb(b"C", &vk.comm);
transcript.absorb(b"U", U);
let (num_rounds_x, num_rounds_y) = (
(vk.S.num_cons as f64).log2() as usize,
((vk.S.num_vars as f64).log2() as usize + 1),
(vk.num_cons as f64).log2() as usize,
((vk.num_vars as f64).log2() as usize + 1),
);
// outer sum-check
@ -333,37 +427,21 @@ impl> RelaxedR1CSSNARKTrait
.map(|i| (i + 1, U.X[i]))
.collect::<Vec<(usize, G::Scalar)>>(),
);
SparsePolynomial::new((vk.S.num_vars as f64).log2() as usize, poly_X).evaluate(&r_y[1..])
SparsePolynomial::new((vk.num_vars as f64).log2() as usize, poly_X).evaluate(&r_y[1..])
};
(G::Scalar::one() - r_y[0]) * self.eval_W + r_y[0] * eval_X
};
let evaluate_as_sparse_polynomial = |S: &R1CSShape<G>,
r_x: &[G::Scalar],
r_y: &[G::Scalar]|
-> (G::Scalar, G::Scalar, G::Scalar) {
let evaluate_with_table =
|M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar {
(0..M.len())
.collect::<Vec<usize>>()
.par_iter()
.map(|&i| {
let (row, col, val) = M[i];
T_x[row] * T_y[col] * val
})
.reduce(G::Scalar::zero, |acc, x| acc + x)
};
let T_x = EqPolynomial::new(r_x.to_vec()).evals();
let T_y = EqPolynomial::new(r_y.to_vec()).evals();
let eval_A_r = evaluate_with_table(&S.A, &T_x, &T_y);
let eval_B_r = evaluate_with_table(&S.B, &T_x, &T_y);
let eval_C_r = evaluate_with_table(&S.C, &T_x, &T_y);
(eval_A_r, eval_B_r, eval_C_r)
};
// verify evaluation argument to retrieve evaluations of R1CS matrices
let (eval_A, eval_B, eval_C) = CC::verify(
&vk.vk_ee,
&vk.comm,
&(&r_x, &r_y),
&self.eval_arg_cc,
&mut transcript,
)?;
let (eval_A_r, eval_B_r, eval_C_r) = evaluate_as_sparse_polynomial(&vk.S, &r_x, &r_y);
let claim_inner_final_expected = (eval_A_r + r * eval_B_r + r * r * eval_C_r) * eval_Z;
let claim_inner_final_expected = (eval_A + r * eval_B + r * r * eval_C) * eval_Z;
if claim_inner_final != claim_inner_final_expected {
return Err(NovaError::InvalidSumcheckProof);
}

+ 20
- 2
src/spartan/polynomial.rs

@ -2,6 +2,7 @@
use core::ops::Index;
use ff::PrimeField;
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
pub(crate) struct EqPolynomial<Scalar: PrimeField> {
r: Vec<Scalar>,
@ -45,8 +46,8 @@ impl EqPolynomial {
}
}
#[derive(Debug)]
pub(crate) struct MultilinearPolynomial<Scalar: PrimeField> {
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct MultilinearPolynomial<Scalar: PrimeField> {
num_vars: usize, // the number of variables in the multilinear polynomial
Z: Vec<Scalar>, // evaluations of the polynomial in all the 2^num_vars Boolean inputs
}
@ -97,6 +98,23 @@ impl MultilinearPolynomial {
.map(|i| chis[i] * self.Z[i])
.reduce(Scalar::zero, |x, y| x + y)
}
pub fn evaluate_with(Z: &[Scalar], r: &[Scalar]) -> Scalar {
EqPolynomial::new(r.to_vec())
.evals()
.into_par_iter()
.zip(Z.into_par_iter())
.map(|(a, b)| a * b)
.reduce(Scalar::zero, |x, y| x + y)
}
pub fn split(&self, idx: usize) -> (Self, Self) {
assert!(idx < self.len());
(
Self::new(self.Z[..idx].to_vec()),
Self::new(self.Z[idx..2 * idx].to_vec()),
)
}
}
impl<Scalar: PrimeField> Index<usize> for MultilinearPolynomial<Scalar> {

+ 220
- 0
src/spartan/spark/mod.rs

@ -0,0 +1,220 @@
//! This module implements `CompCommitmentEngineTrait` using Spartan's SPARK compiler
//! We also provide a trivial implementation that has the verifier evaluate the sparse polynomials
use crate::{
errors::NovaError,
r1cs::R1CSShape,
spartan::{math::Math, CompCommitmentEngineTrait},
traits::{evaluation::EvaluationEngineTrait, Group, TranscriptReprTrait},
CommitmentKey,
};
use core::marker::PhantomData;
use serde::{Deserialize, Serialize};
/// A trivial implementation of `ComputationCommitmentEngineTrait`
pub struct TrivialCompComputationEngine<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
_p: PhantomData<G>,
_p2: PhantomData<EE>,
}
/// Provides an implementation of a trivial commitment
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct TrivialCommitment<G: Group> {
S: R1CSShape<G>,
}
/// Provides an implementation of a trivial decommitment
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct TrivialDecommitment<G: Group> {
_p: PhantomData<G>,
}
/// Provides an implementation of a trivial evaluation argument
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct TrivialEvaluationArgument<G: Group> {
_p: PhantomData<G>,
}
impl<G: Group> TranscriptReprTrait<G> for TrivialCommitment<G> {
fn to_transcript_bytes(&self) -> Vec<u8> {
self.S.to_transcript_bytes()
}
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> CompCommitmentEngineTrait<G, EE>
for TrivialCompComputationEngine<G, EE>
{
type Decommitment = TrivialDecommitment<G>;
type Commitment = TrivialCommitment<G>;
type EvaluationArgument = TrivialEvaluationArgument<G>;
/// commits to R1CS matrices
fn commit(
_ck: &CommitmentKey<G>,
S: &R1CSShape<G>,
) -> Result<(Self::Commitment, Self::Decommitment), NovaError> {
Ok((
TrivialCommitment { S: S.clone() },
TrivialDecommitment {
_p: Default::default(),
},
))
}
/// proves an evaluation of R1CS matrices viewed as polynomials
fn prove(
_ck: &CommitmentKey<G>,
_ek: &EE::ProverKey,
_S: &R1CSShape<G>,
_decomm: &Self::Decommitment,
_comm: &Self::Commitment,
_r: &(&[G::Scalar], &[G::Scalar]),
_transcript: &mut G::TE,
) -> Result<Self::EvaluationArgument, NovaError> {
Ok(TrivialEvaluationArgument {
_p: Default::default(),
})
}
/// verifies an evaluation of R1CS matrices viewed as polynomials
fn verify(
_vk: &EE::VerifierKey,
comm: &Self::Commitment,
r: &(&[G::Scalar], &[G::Scalar]),
_arg: &Self::EvaluationArgument,
_transcript: &mut G::TE,
) -> Result<(G::Scalar, G::Scalar, G::Scalar), NovaError> {
let (r_x, r_y) = r;
let evals = SparsePolynomial::<G>::multi_evaluate(&[&comm.S.A, &comm.S.B, &comm.S.C], r_x, r_y);
Ok((evals[0], evals[1], evals[2]))
}
}
mod product;
mod sparse;
use sparse::{SparseEvaluationArgument, SparsePolynomial, SparsePolynomialCommitment};
/// A non-trivial implementation of `CompCommitmentEngineTrait` using Spartan's SPARK compiler
pub struct SparkEngine<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
_p: PhantomData<G>,
_p2: PhantomData<EE>,
}
/// An implementation of Spark decommitment
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct SparkDecommitment<G: Group> {
A: SparsePolynomial<G>,
B: SparsePolynomial<G>,
C: SparsePolynomial<G>,
}
impl<G: Group> SparkDecommitment<G> {
fn new(S: &R1CSShape<G>) -> Self {
let ell = (S.num_cons.log_2(), S.num_vars.log_2() + 1);
let A = SparsePolynomial::new(ell, &S.A);
let B = SparsePolynomial::new(ell, &S.B);
let C = SparsePolynomial::new(ell, &S.C);
Self { A, B, C }
}
fn commit(&self, ck: &CommitmentKey<G>) -> SparkCommitment<G> {
let comm_A = self.A.commit(ck);
let comm_B = self.B.commit(ck);
let comm_C = self.C.commit(ck);
SparkCommitment {
comm_A,
comm_B,
comm_C,
}
}
}
/// An implementation of Spark commitment
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct SparkCommitment<G: Group> {
comm_A: SparsePolynomialCommitment<G>,
comm_B: SparsePolynomialCommitment<G>,
comm_C: SparsePolynomialCommitment<G>,
}
impl<G: Group> TranscriptReprTrait<G> for SparkCommitment<G> {
fn to_transcript_bytes(&self) -> Vec<u8> {
let mut bytes = self.comm_A.to_transcript_bytes();
bytes.extend(self.comm_B.to_transcript_bytes());
bytes.extend(self.comm_C.to_transcript_bytes());
bytes
}
}
/// Provides an implementation of a trivial evaluation argument
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct SparkEvaluationArgument<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
arg_A: SparseEvaluationArgument<G, EE>,
arg_B: SparseEvaluationArgument<G, EE>,
arg_C: SparseEvaluationArgument<G, EE>,
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> CompCommitmentEngineTrait<G, EE>
for SparkEngine<G, EE>
{
type Decommitment = SparkDecommitment<G>;
type Commitment = SparkCommitment<G>;
type EvaluationArgument = SparkEvaluationArgument<G, EE>;
/// commits to R1CS matrices
fn commit(
ck: &CommitmentKey<G>,
S: &R1CSShape<G>,
) -> Result<(Self::Commitment, Self::Decommitment), NovaError> {
let sparse = SparkDecommitment::new(S);
let comm = sparse.commit(ck);
Ok((comm, sparse))
}
/// proves an evaluation of R1CS matrices viewed as polynomials
fn prove(
ck: &CommitmentKey<G>,
pk_ee: &EE::ProverKey,
S: &R1CSShape<G>,
decomm: &Self::Decommitment,
comm: &Self::Commitment,
r: &(&[G::Scalar], &[G::Scalar]),
transcript: &mut G::TE,
) -> Result<Self::EvaluationArgument, NovaError> {
let arg_A =
SparseEvaluationArgument::prove(ck, pk_ee, &decomm.A, &S.A, &comm.comm_A, r, transcript)?;
let arg_B =
SparseEvaluationArgument::prove(ck, pk_ee, &decomm.B, &S.B, &comm.comm_B, r, transcript)?;
let arg_C =
SparseEvaluationArgument::prove(ck, pk_ee, &decomm.C, &S.C, &comm.comm_C, r, transcript)?;
Ok(SparkEvaluationArgument {
arg_A,
arg_B,
arg_C,
})
}
/// verifies an evaluation of R1CS matrices viewed as polynomials
fn verify(
vk_ee: &EE::VerifierKey,
comm: &Self::Commitment,
r: &(&[G::Scalar], &[G::Scalar]),
arg: &Self::EvaluationArgument,
transcript: &mut G::TE,
) -> Result<(G::Scalar, G::Scalar, G::Scalar), NovaError> {
let eval_A = arg.arg_A.verify(vk_ee, &comm.comm_A, r, transcript)?;
let eval_B = arg.arg_B.verify(vk_ee, &comm.comm_B, r, transcript)?;
let eval_C = arg.arg_C.verify(vk_ee, &comm.comm_C, r, transcript)?;
Ok((eval_A, eval_B, eval_C))
}
}

+ 477
- 0
src/spartan/spark/product.rs

@ -0,0 +1,477 @@
use crate::{
errors::NovaError,
spartan::{
math::Math,
polynomial::{EqPolynomial, MultilinearPolynomial},
sumcheck::{CompressedUniPoly, SumcheckProof, UniPoly},
},
traits::{Group, TranscriptEngineTrait},
};
use core::marker::PhantomData;
use ff::{Field, PrimeField};
use serde::{Deserialize, Serialize};
pub(crate) struct IdentityPolynomial<Scalar: PrimeField> {
ell: usize,
_p: PhantomData<Scalar>,
}
impl<Scalar: PrimeField> IdentityPolynomial<Scalar> {
pub fn new(ell: usize) -> Self {
IdentityPolynomial {
ell,
_p: Default::default(),
}
}
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
assert_eq!(self.ell, r.len());
(0..self.ell)
.map(|i| Scalar::from(2_usize.pow((self.ell - i - 1) as u32) as u64) * r[i])
.fold(Scalar::zero(), |acc, item| acc + item)
}
}
impl<G: Group> SumcheckProof<G> {
pub fn prove_cubic<F>(
claim: &G::Scalar,
num_rounds: usize,
poly_A: &mut MultilinearPolynomial<G::Scalar>,
poly_B: &mut MultilinearPolynomial<G::Scalar>,
poly_C: &mut MultilinearPolynomial<G::Scalar>,
comb_func: F,
transcript: &mut G::TE,
) -> Result<(Self, Vec<G::Scalar>, Vec<G::Scalar>), NovaError>
where
F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar,
{
let mut e = *claim;
let mut r: Vec<G::Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly<G>> = Vec::new();
for _j in 0..num_rounds {
let mut eval_point_0 = G::Scalar::zero();
let mut eval_point_2 = G::Scalar::zero();
let mut eval_point_3 = G::Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
eval_point_2 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
eval_point_3 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
let evals = vec![eval_point_0, e - eval_point_0, eval_point_2, eval_point_3];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
transcript.absorb(b"p", &poly);
//derive the verifier's challenge for the next round
let r_i = transcript.squeeze(b"c")?;
r.push(r_i);
// bound all tables to the verifier's challenege
poly_A.bound_poly_var_top(&r_i);
poly_B.bound_poly_var_top(&r_i);
poly_C.bound_poly_var_top(&r_i);
e = poly.evaluate(&r_i);
cubic_polys.push(poly.compress());
}
Ok((
Self::new(cubic_polys),
r,
vec![poly_A[0], poly_B[0], poly_C[0]],
))
}
pub fn prove_cubic_batched<F>(
claim: &G::Scalar,
num_rounds: usize,
poly_vec: (
&mut Vec<&mut MultilinearPolynomial<G::Scalar>>,
&mut Vec<&mut MultilinearPolynomial<G::Scalar>>,
&mut MultilinearPolynomial<G::Scalar>,
),
coeffs: &[G::Scalar],
comb_func: F,
transcript: &mut G::TE,
) -> Result<
(
Self,
Vec<G::Scalar>,
(Vec<G::Scalar>, Vec<G::Scalar>, G::Scalar),
),
NovaError,
>
where
F: Fn(&G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar,
{
let (poly_A_vec, poly_B_vec, poly_C) = poly_vec;
let mut e = *claim;
let mut r: Vec<G::Scalar> = Vec::new();
let mut cubic_polys: Vec<CompressedUniPoly<G>> = Vec::new();
for _j in 0..num_rounds {
let mut evals: Vec<(G::Scalar, G::Scalar, G::Scalar)> = Vec::new();
for (poly_A, poly_B) in poly_A_vec.iter().zip(poly_B_vec.iter()) {
let mut eval_point_0 = G::Scalar::zero();
let mut eval_point_2 = G::Scalar::zero();
let mut eval_point_3 = G::Scalar::zero();
let len = poly_A.len() / 2;
for i in 0..len {
// eval 0: bound_func is A(low)
eval_point_0 += comb_func(&poly_A[i], &poly_B[i], &poly_C[i]);
// eval 2: bound_func is -A(low) + 2*A(high)
let poly_A_bound_point = poly_A[len + i] + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B[len + i] + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C[len + i] + poly_C[len + i] - poly_C[i];
eval_point_2 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
// eval 3: bound_func is -2A(low) + 3A(high); computed incrementally with bound_func applied to eval(2)
let poly_A_bound_point = poly_A_bound_point + poly_A[len + i] - poly_A[i];
let poly_B_bound_point = poly_B_bound_point + poly_B[len + i] - poly_B[i];
let poly_C_bound_point = poly_C_bound_point + poly_C[len + i] - poly_C[i];
eval_point_3 += comb_func(
&poly_A_bound_point,
&poly_B_bound_point,
&poly_C_bound_point,
);
}
evals.push((eval_point_0, eval_point_2, eval_point_3));
}
let evals_combined_0 = (0..evals.len())
.map(|i| evals[i].0 * coeffs[i])
.fold(G::Scalar::zero(), |acc, item| acc + item);
let evals_combined_2 = (0..evals.len())
.map(|i| evals[i].1 * coeffs[i])
.fold(G::Scalar::zero(), |acc, item| acc + item);
let evals_combined_3 = (0..evals.len())
.map(|i| evals[i].2 * coeffs[i])
.fold(G::Scalar::zero(), |acc, item| acc + item);
let evals = vec![
evals_combined_0,
e - evals_combined_0,
evals_combined_2,
evals_combined_3,
];
let poly = UniPoly::from_evals(&evals);
// append the prover's message to the transcript
transcript.absorb(b"p", &poly);
// derive the verifier's challenge for the next round
let r_i = transcript.squeeze(b"c")?;
r.push(r_i);
// bound all tables to the verifier's challenege
for (poly_A, poly_B) in poly_A_vec.iter_mut().zip(poly_B_vec.iter_mut()) {
poly_A.bound_poly_var_top(&r_i);
poly_B.bound_poly_var_top(&r_i);
}
poly_C.bound_poly_var_top(&r_i);
e = poly.evaluate(&r_i);
cubic_polys.push(poly.compress());
}
let poly_A_final = (0..poly_A_vec.len()).map(|i| poly_A_vec[i][0]).collect();
let poly_B_final = (0..poly_B_vec.len()).map(|i| poly_B_vec[i][0]).collect();
let claims_prod = (poly_A_final, poly_B_final, poly_C[0]);
Ok((SumcheckProof::new(cubic_polys), r, claims_prod))
}
}
#[derive(Debug)]
pub struct ProductArgumentInputs<G: Group> {
left_vec: Vec<MultilinearPolynomial<G::Scalar>>,
right_vec: Vec<MultilinearPolynomial<G::Scalar>>,
}
impl<G: Group> ProductArgumentInputs<G> {
fn compute_layer(
inp_left: &MultilinearPolynomial<G::Scalar>,
inp_right: &MultilinearPolynomial<G::Scalar>,
) -> (
MultilinearPolynomial<G::Scalar>,
MultilinearPolynomial<G::Scalar>,
) {
let len = inp_left.len() + inp_right.len();
let outp_left = (0..len / 4)
.map(|i| inp_left[i] * inp_right[i])
.collect::<Vec<G::Scalar>>();
let outp_right = (len / 4..len / 2)
.map(|i| inp_left[i] * inp_right[i])
.collect::<Vec<G::Scalar>>();
(
MultilinearPolynomial::new(outp_left),
MultilinearPolynomial::new(outp_right),
)
}
pub fn new(poly: &MultilinearPolynomial<G::Scalar>) -> Self {
let mut left_vec: Vec<MultilinearPolynomial<G::Scalar>> = Vec::new();
let mut right_vec: Vec<MultilinearPolynomial<G::Scalar>> = Vec::new();
let num_layers = poly.len().log_2();
let (outp_left, outp_right) = poly.split(poly.len() / 2);
left_vec.push(outp_left);
right_vec.push(outp_right);
for i in 0..num_layers - 1 {
let (outp_left, outp_right) =
ProductArgumentInputs::<G>::compute_layer(&left_vec[i], &right_vec[i]);
left_vec.push(outp_left);
right_vec.push(outp_right);
}
Self {
left_vec,
right_vec,
}
}
pub fn evaluate(&self) -> G::Scalar {
let len = self.left_vec.len();
assert_eq!(self.left_vec[len - 1].get_num_vars(), 0);
assert_eq!(self.right_vec[len - 1].get_num_vars(), 0);
self.left_vec[len - 1][0] * self.right_vec[len - 1][0]
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct LayerProofBatched<G: Group> {
proof: SumcheckProof<G>,
claims_prod_left: Vec<G::Scalar>,
claims_prod_right: Vec<G::Scalar>,
}
impl<G: Group> LayerProofBatched<G> {
pub fn verify(
&self,
claim: G::Scalar,
num_rounds: usize,
degree_bound: usize,
transcript: &mut G::TE,
) -> Result<(G::Scalar, Vec<G::Scalar>), NovaError> {
self
.proof
.verify(claim, num_rounds, degree_bound, transcript)
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub(crate) struct ProductArgumentBatched<G: Group> {
proof: Vec<LayerProofBatched<G>>,
}
impl<G: Group> ProductArgumentBatched<G> {
pub fn prove(
poly_vec: &[&MultilinearPolynomial<G::Scalar>],
transcript: &mut G::TE,
) -> Result<(Self, Vec<G::Scalar>, Vec<G::Scalar>), NovaError> {
let mut prod_circuit_vec: Vec<_> = (0..poly_vec.len())
.map(|i| ProductArgumentInputs::<G>::new(poly_vec[i]))
.collect();
let mut proof_layers: Vec<LayerProofBatched<G>> = Vec::new();
let num_layers = prod_circuit_vec[0].left_vec.len();
let evals = (0..prod_circuit_vec.len())
.map(|i| prod_circuit_vec[i].evaluate())
.collect::<Vec<G::Scalar>>();
let mut claims_to_verify = evals.clone();
let mut rand = Vec::new();
for layer_id in (0..num_layers).rev() {
let len = prod_circuit_vec[0].left_vec[layer_id].len()
+ prod_circuit_vec[0].right_vec[layer_id].len();
let mut poly_C = MultilinearPolynomial::new(EqPolynomial::new(rand.clone()).evals());
assert_eq!(poly_C.len(), len / 2);
let num_rounds_prod = poly_C.len().log_2();
let comb_func_prod = |poly_A_comp: &G::Scalar,
poly_B_comp: &G::Scalar,
poly_C_comp: &G::Scalar|
-> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp };
let mut poly_A_batched: Vec<&mut MultilinearPolynomial<G::Scalar>> = Vec::new();
let mut poly_B_batched: Vec<&mut MultilinearPolynomial<G::Scalar>> = Vec::new();
for prod_circuit in prod_circuit_vec.iter_mut() {
poly_A_batched.push(&mut prod_circuit.left_vec[layer_id]);
poly_B_batched.push(&mut prod_circuit.right_vec[layer_id])
}
let poly_vec = (&mut poly_A_batched, &mut poly_B_batched, &mut poly_C);
// produce a fresh set of coeffs and a joint claim
let coeff_vec = {
let s = transcript.squeeze(b"r")?;
let mut s_vec = vec![s];
for i in 1..claims_to_verify.len() {
s_vec.push(s_vec[i - 1] * s);
}
s_vec
};
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.fold(G::Scalar::zero(), |acc, item| acc + item);
let (proof, rand_prod, claims_prod) = SumcheckProof::prove_cubic_batched(
&claim,
num_rounds_prod,
poly_vec,
&coeff_vec,
comb_func_prod,
transcript,
)?;
let (claims_prod_left, claims_prod_right, _claims_eq) = claims_prod;
let v = {
let mut v = claims_prod_left.clone();
v.extend(&claims_prod_right);
v
};
transcript.absorb(b"p", &v.as_slice());
// produce a random challenge to condense two claims into a single claim
let r_layer = transcript.squeeze(b"c")?;
claims_to_verify = (0..prod_circuit_vec.len())
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
.collect::<Vec<G::Scalar>>();
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
proof_layers.push(LayerProofBatched {
proof,
claims_prod_left,
claims_prod_right,
});
}
Ok((
ProductArgumentBatched {
proof: proof_layers,
},
evals,
rand,
))
}
pub fn verify(
&self,
claims_prod_vec: &[G::Scalar],
len: usize,
transcript: &mut G::TE,
) -> Result<(Vec<G::Scalar>, Vec<G::Scalar>), NovaError> {
let num_layers = len.log_2();
let mut rand: Vec<G::Scalar> = Vec::new();
if self.proof.len() != num_layers {
return Err(NovaError::InvalidProductProof);
}
let mut claims_to_verify = claims_prod_vec.to_owned();
for (num_rounds, i) in (0..num_layers).enumerate() {
// produce random coefficients, one for each instance
let coeff_vec = {
let s = transcript.squeeze(b"r")?;
let mut s_vec = vec![s];
for i in 1..claims_to_verify.len() {
s_vec.push(s_vec[i - 1] * s);
}
s_vec
};
// produce a joint claim
let claim = (0..claims_to_verify.len())
.map(|i| claims_to_verify[i] * coeff_vec[i])
.fold(G::Scalar::zero(), |acc, item| acc + item);
let (claim_last, rand_prod) = self.proof[i].verify(claim, num_rounds, 3, transcript)?;
let claims_prod_left = &self.proof[i].claims_prod_left;
let claims_prod_right = &self.proof[i].claims_prod_right;
if claims_prod_left.len() != claims_prod_vec.len()
|| claims_prod_right.len() != claims_prod_vec.len()
{
return Err(NovaError::InvalidProductProof);
}
let v = {
let mut v = claims_prod_left.clone();
v.extend(claims_prod_right);
v
};
transcript.absorb(b"p", &v.as_slice());
if rand.len() != rand_prod.len() {
return Err(NovaError::InvalidProductProof);
}
let eq: G::Scalar = (0..rand.len())
.map(|i| {
rand[i] * rand_prod[i] + (G::Scalar::one() - rand[i]) * (G::Scalar::one() - rand_prod[i])
})
.fold(G::Scalar::one(), |acc, item| acc * item);
let claim_expected: G::Scalar = (0..claims_prod_vec.len())
.map(|i| coeff_vec[i] * (claims_prod_left[i] * claims_prod_right[i] * eq))
.fold(G::Scalar::zero(), |acc, item| acc + item);
if claim_expected != claim_last {
return Err(NovaError::InvalidProductProof);
}
// produce a random challenge
let r_layer = transcript.squeeze(b"c")?;
claims_to_verify = (0..claims_prod_left.len())
.map(|i| claims_prod_left[i] + r_layer * (claims_prod_right[i] - claims_prod_left[i]))
.collect::<Vec<G::Scalar>>();
let mut ext = vec![r_layer];
ext.extend(rand_prod);
rand = ext;
}
Ok((claims_to_verify, rand))
}
}

+ 732
- 0
src/spartan/spark/sparse.rs

@ -0,0 +1,732 @@
#![allow(clippy::type_complexity)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::needless_range_loop)]
use crate::{
errors::NovaError,
spartan::{
math::Math,
polynomial::{EqPolynomial, MultilinearPolynomial},
spark::product::{IdentityPolynomial, ProductArgumentBatched},
SumcheckProof,
},
traits::{
commitment::CommitmentEngineTrait, evaluation::EvaluationEngineTrait, Group,
TranscriptEngineTrait, TranscriptReprTrait,
},
Commitment, CommitmentKey,
};
use ff::Field;
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
/// A type that holds a sparse polynomial in dense representation
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct SparsePolynomial<G: Group> {
ell: (usize, usize), // number of variables in each dimension
// dense representation
row: Vec<G::Scalar>,
col: Vec<G::Scalar>,
val: Vec<G::Scalar>,
// timestamp polynomials
row_read_ts: Vec<G::Scalar>,
row_audit_ts: Vec<G::Scalar>,
col_read_ts: Vec<G::Scalar>,
col_audit_ts: Vec<G::Scalar>,
}
/// A type that holds a commitment to a sparse polynomial
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct SparsePolynomialCommitment<G: Group> {
ell: (usize, usize), // number of variables
size: usize, // size of the dense representation
// commitments to the dense representation
comm_row: Commitment<G>,
comm_col: Commitment<G>,
comm_val: Commitment<G>,
// commitments to the timestamp polynomials
comm_row_read_ts: Commitment<G>,
comm_row_audit_ts: Commitment<G>,
comm_col_read_ts: Commitment<G>,
comm_col_audit_ts: Commitment<G>,
}
impl<G: Group> TranscriptReprTrait<G> for SparsePolynomialCommitment<G> {
fn to_transcript_bytes(&self) -> Vec<u8> {
[
self.comm_row,
self.comm_col,
self.comm_val,
self.comm_row_read_ts,
self.comm_row_audit_ts,
self.comm_col_read_ts,
self.comm_col_audit_ts,
]
.as_slice()
.to_transcript_bytes()
}
}
impl<G: Group> SparsePolynomial<G> {
pub fn new(ell: (usize, usize), M: &[(usize, usize, G::Scalar)]) -> Self {
let mut row = M.iter().map(|(r, _, _)| *r).collect::<Vec<usize>>();
let mut col = M.iter().map(|(_, c, _)| *c).collect::<Vec<usize>>();
let mut val = M.iter().map(|(_, _, v)| *v).collect::<Vec<G::Scalar>>();
let num_ops = M.len().next_power_of_two();
let num_cells_row = ell.0.pow2();
let num_cells_col = ell.1.pow2();
row.resize(num_ops, 0usize);
col.resize(num_ops, 0usize);
val.resize(num_ops, G::Scalar::zero());
// timestamp calculation routine
let timestamp_calc =
|num_ops: usize, num_cells: usize, addr_trace: &[usize]| -> (Vec<usize>, Vec<usize>) {
let mut read_ts = vec![0usize; num_ops];
let mut audit_ts = vec![0usize; num_cells];
assert!(num_ops >= addr_trace.len());
for i in 0..addr_trace.len() {
let addr = addr_trace[i];
assert!(addr < num_cells);
let r_ts = audit_ts[addr];
read_ts[i] = r_ts;
let w_ts = r_ts + 1;
audit_ts[addr] = w_ts;
}
(read_ts, audit_ts)
};
// timestamp polynomials for row
let (row_read_ts, row_audit_ts) = timestamp_calc(num_ops, num_cells_row, &row);
let (col_read_ts, col_audit_ts) = timestamp_calc(num_ops, num_cells_col, &col);
let to_vec_scalar = |v: &[usize]| -> Vec<G::Scalar> {
(0..v.len())
.map(|i| G::Scalar::from(v[i] as u64))
.collect::<Vec<G::Scalar>>()
};
Self {
ell,
// dense representation
row: to_vec_scalar(&row),
col: to_vec_scalar(&col),
val,
// timestamp polynomials
row_read_ts: to_vec_scalar(&row_read_ts),
row_audit_ts: to_vec_scalar(&row_audit_ts),
col_read_ts: to_vec_scalar(&col_read_ts),
col_audit_ts: to_vec_scalar(&col_audit_ts),
}
}
pub fn commit(&self, ck: &CommitmentKey<G>) -> SparsePolynomialCommitment<G> {
let comm_vec: Vec<Commitment<G>> = [
&self.row,
&self.col,
&self.val,
&self.row_read_ts,
&self.row_audit_ts,
&self.col_read_ts,
&self.col_audit_ts,
]
.par_iter()
.map(|v| G::CE::commit(ck, v))
.collect();
SparsePolynomialCommitment {
ell: self.ell,
size: self.row.len(),
comm_row: comm_vec[0],
comm_col: comm_vec[1],
comm_val: comm_vec[2],
comm_row_read_ts: comm_vec[3],
comm_row_audit_ts: comm_vec[4],
comm_col_read_ts: comm_vec[5],
comm_col_audit_ts: comm_vec[6],
}
}
pub fn multi_evaluate(
M_vec: &[&[(usize, usize, G::Scalar)]],
r_x: &[G::Scalar],
r_y: &[G::Scalar],
) -> Vec<G::Scalar> {
let evaluate_with_table =
|M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar {
(0..M.len())
.collect::<Vec<usize>>()
.par_iter()
.map(|&i| {
let (row, col, val) = M[i];
T_x[row] * T_y[col] * val
})
.reduce(G::Scalar::zero, |acc, x| acc + x)
};
let (T_x, T_y) = rayon::join(
|| EqPolynomial::new(r_x.to_vec()).evals(),
|| EqPolynomial::new(r_y.to_vec()).evals(),
);
(0..M_vec.len())
.collect::<Vec<usize>>()
.par_iter()
.map(|&i| evaluate_with_table(M_vec[i], &T_x, &T_y))
.collect()
}
fn evaluation_oracles(
M: &[(usize, usize, G::Scalar)],
r_x: &[G::Scalar],
r_y: &[G::Scalar],
) -> (
Vec<G::Scalar>,
Vec<G::Scalar>,
Vec<G::Scalar>,
Vec<G::Scalar>,
) {
let evaluation_oracles_with_table = |M: &[(usize, usize, G::Scalar)],
T_x: &[G::Scalar],
T_y: &[G::Scalar]|
-> (Vec<G::Scalar>, Vec<G::Scalar>) {
(0..M.len())
.collect::<Vec<usize>>()
.par_iter()
.map(|&i| {
let (row, col, _val) = M[i];
(T_x[row], T_y[col])
})
.collect::<Vec<(G::Scalar, G::Scalar)>>()
.into_par_iter()
.unzip()
};
let (T_x, T_y) = rayon::join(
|| EqPolynomial::new(r_x.to_vec()).evals(),
|| EqPolynomial::new(r_y.to_vec()).evals(),
);
let (mut E_row, mut E_col) = evaluation_oracles_with_table(M, &T_x, &T_y);
// resize the returned vectors
E_row.resize(M.len().next_power_of_two(), T_x[0]); // we place T_x[0] since resized row is appended with 0s
E_col.resize(M.len().next_power_of_two(), T_y[0]);
(E_row, E_col, T_x, T_y)
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct SparseEvaluationArgument<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
// claimed evaluation
eval: G::Scalar,
// oracles
comm_E_row: Commitment<G>,
comm_E_col: Commitment<G>,
// proof of correct evaluation wrt oracles
sc_proof_eval: SumcheckProof<G>,
eval_E_row: G::Scalar,
eval_E_col: G::Scalar,
eval_val: G::Scalar,
arg_eval: EE::EvaluationArgument,
// proof that E_row is well-formed
eval_init_row: G::Scalar,
eval_read_row: G::Scalar,
eval_write_row: G::Scalar,
eval_audit_row: G::Scalar,
eval_init_col: G::Scalar,
eval_read_col: G::Scalar,
eval_write_col: G::Scalar,
eval_audit_col: G::Scalar,
sc_prod_init_audit_row: ProductArgumentBatched<G>,
sc_prod_read_write_row_col: ProductArgumentBatched<G>,
sc_prod_init_audit_col: ProductArgumentBatched<G>,
eval_row: G::Scalar,
eval_row_read_ts: G::Scalar,
eval_E_row2: G::Scalar,
eval_row_audit_ts: G::Scalar,
eval_col: G::Scalar,
eval_col_read_ts: G::Scalar,
eval_E_col2: G::Scalar,
eval_col_audit_ts: G::Scalar,
arg_row_col_joint: EE::EvaluationArgument,
arg_row_audit_ts: EE::EvaluationArgument,
arg_col_audit_ts: EE::EvaluationArgument,
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> SparseEvaluationArgument<G, EE> {
pub fn prove(
ck: &CommitmentKey<G>,
pk_ee: &EE::ProverKey,
poly: &SparsePolynomial<G>,
sparse: &[(usize, usize, G::Scalar)],
comm: &SparsePolynomialCommitment<G>,
r: &(&[G::Scalar], &[G::Scalar]),
transcript: &mut G::TE,
) -> Result<Self, NovaError> {
let (r_x, r_y) = r;
let eval = SparsePolynomial::<G>::multi_evaluate(&[sparse], r_x, r_y)[0];
// compute oracles to prove the correctness of `eval`
let (E_row, E_col, T_x, T_y) = SparsePolynomial::<G>::evaluation_oracles(sparse, r_x, r_y);
let val = poly.val.clone();
// commit to the two oracles
let comm_E_row = G::CE::commit(ck, &E_row);
let comm_E_col = G::CE::commit(ck, &E_col);
// absorb the commitments and the claimed evaluation
transcript.absorb(b"E", &vec![comm_E_row, comm_E_col].as_slice());
transcript.absorb(b"e", &eval);
let comb_func_eval = |poly_A_comp: &G::Scalar,
poly_B_comp: &G::Scalar,
poly_C_comp: &G::Scalar|
-> G::Scalar { *poly_A_comp * *poly_B_comp * *poly_C_comp };
let (sc_proof_eval, r_eval, claims_eval) = SumcheckProof::<G>::prove_cubic(
&eval,
E_row.len().log_2(), // number of rounds
&mut MultilinearPolynomial::new(E_row.clone()),
&mut MultilinearPolynomial::new(E_col.clone()),
&mut MultilinearPolynomial::new(val.clone()),
comb_func_eval,
transcript,
)?;
// prove evaluations of E_row, E_col and val at r_eval
let rho = transcript.squeeze(b"r")?;
let comm_joint = comm_E_row + comm_E_col * rho + comm.comm_val * rho * rho;
let eval_joint = claims_eval[0] + rho * claims_eval[1] + rho * rho * claims_eval[2];
let poly_eval = E_row
.iter()
.zip(E_col.iter())
.zip(val.iter())
.map(|((a, b), c)| *a + rho * *b + rho * rho * *c)
.collect::<Vec<G::Scalar>>();
let arg_eval = EE::prove(
ck,
pk_ee,
transcript,
&comm_joint,
&poly_eval,
&r_eval,
&eval_joint,
)?;
// we now need to prove that E_row and E_col are well-formed
// we use memory checking: H(INIT) * H(WS) =? H(RS) * H(FINAL)
let gamma_1 = transcript.squeeze(b"g1")?;
let gamma_2 = transcript.squeeze(b"g2")?;
let gamma_1_sqr = gamma_1 * gamma_1;
let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar {
(*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2
};
let init_row = (0..T_x.len())
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_x[i], &G::Scalar::zero()))
.collect::<Vec<G::Scalar>>();
let read_row = (0..E_row.len())
.map(|i| hash_func(&poly.row[i], &E_row[i], &poly.row_read_ts[i]))
.collect::<Vec<G::Scalar>>();
let write_row = (0..E_row.len())
.map(|i| {
hash_func(
&poly.row[i],
&E_row[i],
&(poly.row_read_ts[i] + G::Scalar::one()),
)
})
.collect::<Vec<G::Scalar>>();
let audit_row = (0..T_x.len())
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_x[i], &poly.row_audit_ts[i]))
.collect::<Vec<G::Scalar>>();
let init_col = (0..T_y.len())
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_y[i], &G::Scalar::zero()))
.collect::<Vec<G::Scalar>>();
let read_col = (0..E_col.len())
.map(|i| hash_func(&poly.col[i], &E_col[i], &poly.col_read_ts[i]))
.collect::<Vec<G::Scalar>>();
let write_col = (0..E_col.len())
.map(|i| {
hash_func(
&poly.col[i],
&E_col[i],
&(poly.col_read_ts[i] + G::Scalar::one()),
)
})
.collect::<Vec<G::Scalar>>();
let audit_col = (0..T_y.len())
.map(|i| hash_func(&G::Scalar::from(i as u64), &T_y[i], &poly.col_audit_ts[i]))
.collect::<Vec<G::Scalar>>();
let (sc_prod_init_audit_row, eval_init_audit_row, r_init_audit_row) =
ProductArgumentBatched::prove(
&[
&MultilinearPolynomial::new(init_row),
&MultilinearPolynomial::new(audit_row),
],
transcript,
)?;
assert_eq!(init_col.len(), audit_col.len());
let (sc_prod_init_audit_col, eval_init_audit_col, r_init_audit_col) =
ProductArgumentBatched::prove(
&[
&MultilinearPolynomial::new(init_col),
&MultilinearPolynomial::new(audit_col),
],
transcript,
)?;
assert_eq!(read_row.len(), write_row.len());
assert_eq!(read_row.len(), read_col.len());
assert_eq!(read_row.len(), write_col.len());
let (sc_prod_read_write_row_col, eval_read_write_row_col, r_read_write_row_col) =
ProductArgumentBatched::prove(
&[
&MultilinearPolynomial::new(read_row),
&MultilinearPolynomial::new(write_row),
&MultilinearPolynomial::new(read_col),
&MultilinearPolynomial::new(write_col),
],
transcript,
)?;
// row-related claims of polynomial evaluations to aid the final check of the sum-check
let eval_row = MultilinearPolynomial::evaluate_with(&poly.row, &r_read_write_row_col);
let eval_row_read_ts =
MultilinearPolynomial::evaluate_with(&poly.row_read_ts, &r_read_write_row_col);
let eval_E_row2 = MultilinearPolynomial::evaluate_with(&E_row, &r_read_write_row_col);
let eval_row_audit_ts =
MultilinearPolynomial::evaluate_with(&poly.row_audit_ts, &r_init_audit_row);
// col-related claims of polynomial evaluations to aid the final check of the sum-check
let eval_col = MultilinearPolynomial::evaluate_with(&poly.col, &r_read_write_row_col);
let eval_col_read_ts =
MultilinearPolynomial::evaluate_with(&poly.col_read_ts, &r_read_write_row_col);
let eval_E_col2 = MultilinearPolynomial::evaluate_with(&E_col, &r_read_write_row_col);
let eval_col_audit_ts =
MultilinearPolynomial::evaluate_with(&poly.col_audit_ts, &r_init_audit_col);
// we can batch prove the first three claims
transcript.absorb(
b"e",
&[
eval_row,
eval_row_read_ts,
eval_E_row2,
eval_col,
eval_col_read_ts,
eval_E_col2,
]
.as_slice(),
);
let c = transcript.squeeze(b"c")?;
let eval_joint = eval_row
+ c * eval_row_read_ts
+ c * c * eval_E_row2
+ c * c * c * eval_col
+ c * c * c * c * eval_col_read_ts
+ c * c * c * c * c * eval_E_col2;
let comm_joint = comm.comm_row
+ comm.comm_row_read_ts * c
+ comm_E_row * c * c
+ comm.comm_col * c * c * c
+ comm.comm_col_read_ts * c * c * c * c
+ comm_E_col * c * c * c * c * c;
let poly_joint = poly
.row
.iter()
.zip(poly.row_read_ts.iter())
.zip(E_row.into_iter())
.zip(poly.col.iter())
.zip(poly.col_read_ts.iter())
.zip(E_col.into_iter())
.map(|(((((x, y), z), m), n), q)| {
*x + c * y + c * c * z + c * c * c * m + c * c * c * c * n + c * c * c * c * c * q
})
.collect::<Vec<_>>();
let arg_row_col_joint = EE::prove(
ck,
pk_ee,
transcript,
&comm_joint,
&poly_joint,
&r_read_write_row_col,
&eval_joint,
)?;
let arg_row_audit_ts = EE::prove(
ck,
pk_ee,
transcript,
&comm.comm_row_audit_ts,
&poly.row_audit_ts,
&r_init_audit_row,
&eval_row_audit_ts,
)?;
let arg_col_audit_ts = EE::prove(
ck,
pk_ee,
transcript,
&comm.comm_col_audit_ts,
&poly.col_audit_ts,
&r_init_audit_col,
&eval_col_audit_ts,
)?;
Ok(Self {
// claimed evaluation
eval,
// oracles
comm_E_row,
comm_E_col,
// proof of correct evaluation wrt oracles
sc_proof_eval,
eval_E_row: claims_eval[0],
eval_E_col: claims_eval[1],
eval_val: claims_eval[2],
arg_eval,
// proof that E_row and E_row are well-formed
eval_init_row: eval_init_audit_row[0],
eval_read_row: eval_read_write_row_col[0],
eval_write_row: eval_read_write_row_col[1],
eval_audit_row: eval_init_audit_row[1],
eval_init_col: eval_init_audit_col[0],
eval_read_col: eval_read_write_row_col[2],
eval_write_col: eval_read_write_row_col[3],
eval_audit_col: eval_init_audit_col[1],
sc_prod_init_audit_row,
sc_prod_read_write_row_col,
sc_prod_init_audit_col,
eval_row,
eval_row_read_ts,
eval_E_row2,
eval_row_audit_ts,
eval_col,
eval_col_read_ts,
eval_E_col2,
eval_col_audit_ts,
arg_row_col_joint,
arg_row_audit_ts,
arg_col_audit_ts,
})
}
pub fn verify(
&self,
vk_ee: &EE::VerifierKey,
comm: &SparsePolynomialCommitment<G>,
r: &(&[G::Scalar], &[G::Scalar]),
transcript: &mut G::TE,
) -> Result<G::Scalar, NovaError> {
let (r_x, r_y) = r;
// append the transcript and scalar
transcript.absorb(b"E", &vec![self.comm_E_row, self.comm_E_col].as_slice());
transcript.absorb(b"e", &self.eval);
// (1) verify the correct evaluation of sparse polynomial
let (claim_eval_final, r_eval) = self.sc_proof_eval.verify(
self.eval,
comm.size.next_power_of_two().log_2(),
3,
transcript,
)?;
// verify the last step of the sum-check
if claim_eval_final != self.eval_E_row * self.eval_E_col * self.eval_val {
return Err(NovaError::InvalidSumcheckProof);
}
// prove evaluations of E_row, E_col and val at r_eval
let rho = transcript.squeeze(b"r")?;
let comm_joint = self.comm_E_row + self.comm_E_col * rho + comm.comm_val * rho * rho;
let eval_joint = self.eval_E_row + rho * self.eval_E_col + rho * rho * self.eval_val;
EE::verify(
vk_ee,
transcript,
&comm_joint,
&r_eval,
&eval_joint,
&self.arg_eval,
)?;
// (2) verify if E_row and E_col are well formed
let gamma_1 = transcript.squeeze(b"g1")?;
let gamma_2 = transcript.squeeze(b"g2")?;
// hash function
let gamma_1_sqr = gamma_1 * gamma_1;
let hash_func = |addr: &G::Scalar, val: &G::Scalar, ts: &G::Scalar| -> G::Scalar {
(*ts * gamma_1_sqr + *val * gamma_1 + *addr) - gamma_2
};
// check the required multiset relationship
// row
if self.eval_init_row * self.eval_write_row != self.eval_read_row * self.eval_audit_row {
return Err(NovaError::InvalidMultisetProof);
}
// col
if self.eval_init_col * self.eval_write_col != self.eval_read_col * self.eval_audit_col {
return Err(NovaError::InvalidMultisetProof);
}
// verify the product proofs
let (claim_init_audit_row, r_init_audit_row) = self.sc_prod_init_audit_row.verify(
&[self.eval_init_row, self.eval_audit_row],
comm.ell.0.pow2(),
transcript,
)?;
let (claim_init_audit_col, r_init_audit_col) = self.sc_prod_init_audit_col.verify(
&[self.eval_init_col, self.eval_audit_col],
comm.ell.1.pow2(),
transcript,
)?;
let (claim_read_write_row_col, r_read_write_row_col) = self.sc_prod_read_write_row_col.verify(
&[
self.eval_read_row,
self.eval_write_row,
self.eval_read_col,
self.eval_write_col,
],
comm.size,
transcript,
)?;
// finish the final step of the three sum-checks
let (claim_init_expected_row, claim_audit_expected_row) = {
let addr = IdentityPolynomial::new(r_init_audit_row.len()).evaluate(&r_init_audit_row);
let val = EqPolynomial::new(r_x.to_vec()).evaluate(&r_init_audit_row);
(
hash_func(&addr, &val, &G::Scalar::zero()),
hash_func(&addr, &val, &self.eval_row_audit_ts),
)
};
let (claim_read_expected_row, claim_write_expected_row) = {
(
hash_func(&self.eval_row, &self.eval_E_row2, &self.eval_row_read_ts),
hash_func(
&self.eval_row,
&self.eval_E_row2,
&(self.eval_row_read_ts + G::Scalar::one()),
),
)
};
// multiset check for the row
if claim_init_expected_row != claim_init_audit_row[0]
|| claim_audit_expected_row != claim_init_audit_row[1]
|| claim_read_expected_row != claim_read_write_row_col[0]
|| claim_write_expected_row != claim_read_write_row_col[1]
{
return Err(NovaError::InvalidSumcheckProof);
}
let (claim_init_expected_col, claim_audit_expected_col) = {
let addr = IdentityPolynomial::new(r_init_audit_col.len()).evaluate(&r_init_audit_col);
let val = EqPolynomial::new(r_y.to_vec()).evaluate(&r_init_audit_col);
(
hash_func(&addr, &val, &G::Scalar::zero()),
hash_func(&addr, &val, &self.eval_col_audit_ts),
)
};
let (claim_read_expected_col, claim_write_expected_col) = {
(
hash_func(&self.eval_col, &self.eval_E_col2, &self.eval_col_read_ts),
hash_func(
&self.eval_col,
&self.eval_E_col2,
&(self.eval_col_read_ts + G::Scalar::one()),
),
)
};
// multiset check for the col
if claim_init_expected_col != claim_init_audit_col[0]
|| claim_audit_expected_col != claim_init_audit_col[1]
|| claim_read_expected_col != claim_read_write_row_col[2]
|| claim_write_expected_col != claim_read_write_row_col[3]
{
return Err(NovaError::InvalidSumcheckProof);
}
transcript.absorb(
b"e",
&[
self.eval_row,
self.eval_row_read_ts,
self.eval_E_row2,
self.eval_col,
self.eval_col_read_ts,
self.eval_E_col2,
]
.as_slice(),
);
let c = transcript.squeeze(b"c")?;
let eval_joint = self.eval_row
+ c * self.eval_row_read_ts
+ c * c * self.eval_E_row2
+ c * c * c * self.eval_col
+ c * c * c * c * self.eval_col_read_ts
+ c * c * c * c * c * self.eval_E_col2;
let comm_joint = comm.comm_row
+ comm.comm_row_read_ts * c
+ self.comm_E_row * c * c
+ comm.comm_col * c * c * c
+ comm.comm_col_read_ts * c * c * c * c
+ self.comm_E_col * c * c * c * c * c;
EE::verify(
vk_ee,
transcript,
&comm_joint,
&r_read_write_row_col,
&eval_joint,
&self.arg_row_col_joint,
)?;
EE::verify(
vk_ee,
transcript,
&comm.comm_row_audit_ts,
&r_init_audit_row,
&self.eval_row_audit_ts,
&self.arg_row_audit_ts,
)?;
EE::verify(
vk_ee,
transcript,
&comm.comm_col_audit_ts,
&r_init_audit_col,
&self.eval_col_audit_ts,
&self.arg_col_audit_ts,
)?;
Ok(self.eval)
}
}

+ 6
- 2
src/spartan/sumcheck.rs

@ -8,13 +8,17 @@ use ff::Field;
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
#[derive(Debug, Serialize, Deserialize)]
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub(crate) struct SumcheckProof<G: Group> {
compressed_polys: Vec<CompressedUniPoly<G>>,
}
impl<G: Group> SumcheckProof<G> {
pub fn new(compressed_polys: Vec<CompressedUniPoly<G>>) -> Self {
Self { compressed_polys }
}
pub fn verify(
&self,
claim: G::Scalar,
@ -302,7 +306,7 @@ pub struct UniPoly {
// ax^2 + bx + c stored as vec![a,c]
// ax^3 + bx^2 + cx + d stored as vec![a,c,d]
#[derive(Debug, Serialize, Deserialize)]
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct CompressedUniPoly<G: Group> {
coeffs_except_linear_term: Vec<G::Scalar>,
_p: PhantomData<G>,

+ 4
- 1
src/traits/snark.rs

@ -19,7 +19,10 @@ pub trait RelaxedR1CSSNARKTrait:
type VerifierKey: Send + Sync + Serialize + for<'de> Deserialize<'de>;
/// Produces the keys for the prover and the verifier
fn setup(ck: &CommitmentKey<G>, S: &R1CSShape<G>) -> (Self::ProverKey, Self::VerifierKey);
fn setup(
ck: &CommitmentKey<G>,
S: &R1CSShape<G>,
) -> Result<(Self::ProverKey, Self::VerifierKey), NovaError>;
/// Produces a new SNARK for a relaxed R1CS
fn prove(

Loading…
Cancel
Save