@ -1,106 +1,154 @@ |
|||||
#![allow(non_snake_case)]
|
#![allow(non_snake_case)]
|
||||
|
|
||||
|
use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
|
||||
|
use core::marker::PhantomData;
|
||||
use criterion::*;
|
use criterion::*;
|
||||
|
use ff::PrimeField;
|
||||
use nova_snark::{
|
use nova_snark::{
|
||||
traits::{circuit::TrivialTestCircuit, Group},
|
|
||||
|
traits::{
|
||||
|
circuit::{StepCircuit, TrivialTestCircuit},
|
||||
|
Group,
|
||||
|
},
|
||||
PublicParams, RecursiveSNARK,
|
PublicParams, RecursiveSNARK,
|
||||
};
|
};
|
||||
use std::time::Duration;
|
use std::time::Duration;
|
||||
|
|
||||
type G1 = pasta_curves::pallas::Point;
|
type G1 = pasta_curves::pallas::Point;
|
||||
type G2 = pasta_curves::vesta::Point;
|
type G2 = pasta_curves::vesta::Point;
|
||||
type C1 = TrivialTestCircuit<<G1 as Group>::Scalar>;
|
|
||||
|
type C1 = NonTrivialTestCircuit<<G1 as Group>::Scalar>;
|
||||
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
|
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
|
||||
|
|
||||
fn recursive_snark_benchmark(c: &mut Criterion) {
|
|
||||
let num_samples = 10;
|
|
||||
bench_recursive_snark(c, num_samples);
|
|
||||
}
|
|
||||
|
|
||||
fn set_duration() -> Criterion {
|
|
||||
Criterion::default().warm_up_time(Duration::from_millis(3000))
|
|
||||
}
|
|
||||
|
|
||||
criterion_group! {
|
criterion_group! {
|
||||
name = recursive_snark;
|
name = recursive_snark;
|
||||
config = set_duration();
|
|
||||
targets = recursive_snark_benchmark
|
|
||||
|
config = Criterion::default().warm_up_time(Duration::from_millis(3000));
|
||||
|
targets = bench_recursive_snark
|
||||
}
|
}
|
||||
|
|
||||
criterion_main!(recursive_snark);
|
criterion_main!(recursive_snark);
|
||||
|
|
||||
fn bench_recursive_snark(c: &mut Criterion, num_samples: usize) {
|
|
||||
let mut group = c.benchmark_group("RecursiveSNARK".to_string());
|
|
||||
group.sample_size(num_samples);
|
|
||||
|
|
||||
// Produce public parameters
|
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(
|
|
||||
TrivialTestCircuit::default(),
|
|
||||
TrivialTestCircuit::default(),
|
|
||||
);
|
|
||||
|
|
||||
// Bench time to produce a recursive SNARK;
|
|
||||
// we execute a certain number of warm-up steps since executing
|
|
||||
// the first step is cheaper than other steps owing to the presence of
|
|
||||
// a lot of zeros in the satisfying assignment
|
|
||||
let num_warmup_steps = 10;
|
|
||||
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
|
||||
|
|
||||
for i in 0..num_warmup_steps {
|
|
||||
let res = RecursiveSNARK::prove_step(
|
|
||||
&pp,
|
|
||||
recursive_snark,
|
|
||||
TrivialTestCircuit::default(),
|
|
||||
|
fn bench_recursive_snark(c: &mut Criterion) {
|
||||
|
// we vary the number of constraints in the step circuit
|
||||
|
for &log_num_cons_in_step_circuit in [0, 15, 16, 17, 18, 19, 20].iter() {
|
||||
|
let num_cons = 1 << log_num_cons_in_step_circuit;
|
||||
|
|
||||
|
let mut group = c.benchmark_group(format!("RecursiveSNARK-StepCircuitSize-{}", num_cons));
|
||||
|
group.sample_size(10);
|
||||
|
|
||||
|
// Produce public parameters
|
||||
|
let pp = PublicParams::<G1, G2, C1, C2>::setup(
|
||||
|
NonTrivialTestCircuit::new(num_cons),
|
||||
TrivialTestCircuit::default(),
|
TrivialTestCircuit::default(),
|
||||
<G1 as Group>::Scalar::one(),
|
|
||||
<G2 as Group>::Scalar::zero(),
|
|
||||
);
|
);
|
||||
assert!(res.is_ok());
|
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
|
||||
|
|
||||
// verify the recursive snark at each step of recursion
|
|
||||
let res = recursive_snark_unwrapped.verify(
|
|
||||
&pp,
|
|
||||
i + 1,
|
|
||||
<G1 as Group>::Scalar::one(),
|
|
||||
<G2 as Group>::Scalar::zero(),
|
|
||||
);
|
|
||||
assert!(res.is_ok());
|
|
||||
|
|
||||
// set the running variable for the next iteration
|
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
|
||||
}
|
|
||||
|
// Bench time to produce a recursive SNARK;
|
||||
|
// we execute a certain number of warm-up steps since executing
|
||||
|
// the first step is cheaper than other steps owing to the presence of
|
||||
|
// a lot of zeros in the satisfying assignment
|
||||
|
let num_warmup_steps = 10;
|
||||
|
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
||||
|
|
||||
|
for i in 0..num_warmup_steps {
|
||||
|
let res = RecursiveSNARK::prove_step(
|
||||
|
&pp,
|
||||
|
recursive_snark,
|
||||
|
NonTrivialTestCircuit::new(num_cons),
|
||||
|
TrivialTestCircuit::default(),
|
||||
|
<G1 as Group>::Scalar::one(),
|
||||
|
<G2 as Group>::Scalar::one(),
|
||||
|
);
|
||||
|
assert!(res.is_ok());
|
||||
|
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
|
||||
group.bench_function("Prove", |b| {
|
|
||||
b.iter(|| {
|
|
||||
// produce a recursive SNARK for a step of the recursion
|
|
||||
assert!(RecursiveSNARK::prove_step(
|
|
||||
black_box(&pp),
|
|
||||
black_box(recursive_snark.clone()),
|
|
||||
black_box(TrivialTestCircuit::default()),
|
|
||||
black_box(TrivialTestCircuit::default()),
|
|
||||
black_box(<G1 as Group>::Scalar::zero()),
|
|
||||
black_box(<G2 as Group>::Scalar::zero()),
|
|
||||
)
|
|
||||
.is_ok());
|
|
||||
})
|
|
||||
});
|
|
||||
|
|
||||
let recursive_snark = recursive_snark.unwrap();
|
|
||||
|
|
||||
// Benchmark the verification time
|
|
||||
let name = "Verify";
|
|
||||
group.bench_function(name, |b| {
|
|
||||
b.iter(|| {
|
|
||||
assert!(black_box(&recursive_snark)
|
|
||||
.verify(
|
|
||||
|
// verify the recursive snark at each step of recursion
|
||||
|
let res = recursive_snark_unwrapped.verify(
|
||||
|
&pp,
|
||||
|
i + 1,
|
||||
|
<G1 as Group>::Scalar::one(),
|
||||
|
<G2 as Group>::Scalar::one(),
|
||||
|
);
|
||||
|
assert!(res.is_ok());
|
||||
|
|
||||
|
// set the running variable for the next iteration
|
||||
|
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
|
}
|
||||
|
|
||||
|
group.bench_function("Prove", |b| {
|
||||
|
b.iter(|| {
|
||||
|
// produce a recursive SNARK for a step of the recursion
|
||||
|
assert!(RecursiveSNARK::prove_step(
|
||||
black_box(&pp),
|
black_box(&pp),
|
||||
black_box(num_warmup_steps),
|
|
||||
black_box(<G1 as Group>::Scalar::zero()),
|
|
||||
black_box(<G2 as Group>::Scalar::zero()),
|
|
||||
|
black_box(recursive_snark.clone()),
|
||||
|
black_box(NonTrivialTestCircuit::new(num_cons)),
|
||||
|
black_box(TrivialTestCircuit::default()),
|
||||
|
black_box(<G1 as Group>::Scalar::one()),
|
||||
|
black_box(<G2 as Group>::Scalar::one()),
|
||||
)
|
)
|
||||
.is_ok());
|
.is_ok());
|
||||
|
})
|
||||
});
|
});
|
||||
});
|
|
||||
group.finish();
|
|
||||
|
|
||||
|
let recursive_snark = recursive_snark.unwrap();
|
||||
|
|
||||
|
// Benchmark the verification time
|
||||
|
group.bench_function("Verify", |b| {
|
||||
|
b.iter(|| {
|
||||
|
assert!(black_box(&recursive_snark)
|
||||
|
.verify(
|
||||
|
black_box(&pp),
|
||||
|
black_box(num_warmup_steps),
|
||||
|
black_box(<G1 as Group>::Scalar::one()),
|
||||
|
black_box(<G2 as Group>::Scalar::one()),
|
||||
|
)
|
||||
|
.is_ok());
|
||||
|
});
|
||||
|
});
|
||||
|
group.finish();
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
#[derive(Clone, Debug, Default)]
|
||||
|
struct NonTrivialTestCircuit<F: PrimeField> {
|
||||
|
num_cons: usize,
|
||||
|
_p: PhantomData<F>,
|
||||
|
}
|
||||
|
|
||||
|
impl<F> NonTrivialTestCircuit<F>
|
||||
|
where
|
||||
|
F: PrimeField,
|
||||
|
{
|
||||
|
pub fn new(num_cons: usize) -> Self {
|
||||
|
Self {
|
||||
|
num_cons,
|
||||
|
_p: Default::default(),
|
||||
|
}
|
||||
|
}
|
||||
|
}
|
||||
|
impl<F> StepCircuit<F> for NonTrivialTestCircuit<F>
|
||||
|
where
|
||||
|
F: PrimeField,
|
||||
|
{
|
||||
|
fn synthesize<CS: ConstraintSystem<F>>(
|
||||
|
&self,
|
||||
|
cs: &mut CS,
|
||||
|
z: AllocatedNum<F>,
|
||||
|
) -> Result<AllocatedNum<F>, SynthesisError> {
|
||||
|
// Consider a an equation: `x^2 = y`, where `x` and `y` are respectively the input and output.
|
||||
|
let mut x = z;
|
||||
|
let mut y = x.clone();
|
||||
|
for i in 0..self.num_cons {
|
||||
|
y = x.square(cs.namespace(|| format!("x_sq_{}", i)))?;
|
||||
|
x = y.clone();
|
||||
|
}
|
||||
|
Ok(y)
|
||||
|
}
|
||||
|
|
||||
|
fn compute(&self, z: &F) -> F {
|
||||
|
let mut x = *z;
|
||||
|
let mut y = x;
|
||||
|
for _i in 0..self.num_cons {
|
||||
|
y = x * x;
|
||||
|
x = y;
|
||||
|
}
|
||||
|
y
|
||||
|
}
|
||||
}
|
}
|