@ -109,6 +109,24 @@ where
Ok ( ( ) )
}
/// Negates the provided point
pub fn negate < CS : ConstraintSystem < Fp > > ( & self , mut cs : CS ) -> Result < Self , SynthesisError > {
let y = AllocatedNum ::alloc ( cs . namespace ( | | "y" ) , | | Ok ( - * self . y . get_value ( ) . get ( ) ? ) ) ? ;
cs . enforce (
| | "check y = - self.y" ,
| lc | lc + self . y . get_variable ( ) ,
| lc | lc + CS ::one ( ) ,
| lc | lc - y . get_variable ( ) ,
) ;
Ok ( Self {
x : self . x . clone ( ) ,
y ,
is_infinity : self . is_infinity . clone ( ) ,
} )
}
/// Add two points (may be equal)
pub fn add < CS : ConstraintSystem < Fp > > (
& self ,
@ -434,34 +452,95 @@ where
Ok ( Self { x , y , is_infinity } )
}
/// A gadget for scalar multiplication.
/// A gadget for scalar multiplication, optimized to use incomplete addition law.
/// The optimization here is analogous to https://github.com/arkworks-rs/r1cs-std/blob/6d64f379a27011b3629cf4c9cb38b7b7b695d5a0/src/groups/curves/short_weierstrass/mod.rs#L295,
/// except we use complete addition law over affine coordinates instead of projective coordinates for the tail bits
pub fn scalar_mul < CS : ConstraintSystem < Fp > > (
& self ,
mut cs : CS ,
scalar : Vec < AllocatedBit > ,
scalar_bits : Vec < AllocatedBit > ,
) -> Result < Self , SynthesisError > {
let mut res = Self ::default ( cs . namespace ( | | "res" ) ) ? ;
for i in ( 0 . . scalar . len ( ) ) . rev ( ) {
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// res = res.double();
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
res = res . double ( cs . namespace ( | | format ! ( "{}: double" , i ) ) ) ? ;
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
// if scalar[i] {
// res = self.add(&res);
// }
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
let self_and_res = self . add ( cs . namespace ( | | format ! ( "{}: add" , i ) ) , & res ) ? ;
res = Self ::conditionally_select (
cs . namespace ( | | format ! ( "{}: Update res" , i ) ) ,
& self_and_res ,
& res ,
& Boolean ::from ( scalar [ i ] . clone ( ) ) ,
let split_len = core ::cmp ::min ( scalar_bits . len ( ) , ( Fp ::NUM_BITS - 2 ) as usize ) ;
let ( incomplete_bits , complete_bits ) = scalar_bits . split_at ( split_len ) ;
// we convert AllocatedPoint into AllocatedPointNonInfinity; we deal with the case where self.is_infinity = 1 below
let mut p = AllocatedPointNonInfinity ::from_allocated_point ( self ) ;
// we assume the first bit to be 1, so we must initialize acc to self and double it
// we remove this assumption below
let mut acc = p . clone ( ) ;
p = p . double_incomplete ( cs . namespace ( | | "double" ) ) ? ;
// perform the double-and-add loop to compute the scalar mul using incomplete addition law
for ( i , bit ) in incomplete_bits . iter ( ) . enumerate ( ) . skip ( 1 ) {
let temp = acc . add_incomplete ( cs . namespace ( | | format ! ( "add {}" , i ) ) , & p ) ? ;
acc = AllocatedPointNonInfinity ::conditionally_select (
cs . namespace ( | | format ! ( "acc_iteration_{}" , i ) ) ,
& temp ,
& acc ,
& Boolean ::from ( bit . clone ( ) ) ,
) ? ;
p = p . double_incomplete ( cs . namespace ( | | format ! ( "double {}" , i ) ) ) ? ;
}
// convert back to AllocatedPoint
let res = {
// we set acc.is_infinity = self.is_infinity
let acc = acc . to_allocated_point ( & self . is_infinity ) ? ;
// we remove the initial slack if bits[0] is as not as assumed (i.e., it is not 1)
let acc_minus_initial = {
let neg = self . negate ( cs . namespace ( | | "negate" ) ) ? ;
acc . add ( cs . namespace ( | | "res minus self" ) , & neg )
} ? ;
AllocatedPoint ::conditionally_select (
cs . namespace ( | | "remove slack if necessary" ) ,
& acc ,
& acc_minus_initial ,
& Boolean ::from ( scalar_bits [ 0 ] . clone ( ) ) ,
) ?
} ;
// when self.is_infinity = 1, return the default point, else return res
// we already set res.is_infinity to be self.is_infinity, so we do not need to set it here
let default = Self ::default ( cs . namespace ( | | "default" ) ) ? ;
let x = conditionally_select2 (
cs . namespace ( | | "check if self.is_infinity is zero (x)" ) ,
& default . x ,
& res . x ,
& self . is_infinity ,
) ? ;
let y = conditionally_select2 (
cs . namespace ( | | "check if self.is_infinity is zero (y)" ) ,
& default . y ,
& res . y ,
& self . is_infinity ,
) ? ;
// we now perform the remaining scalar mul using complete addition law
let mut acc = AllocatedPoint {
x ,
y ,
is_infinity : res . is_infinity ,
} ;
let mut p_complete = p . to_allocated_point ( & self . is_infinity ) ? ;
for ( i , bit ) in complete_bits . iter ( ) . enumerate ( ) {
let temp = acc . add ( cs . namespace ( | | format ! ( "add_complete {}" , i ) ) , & p_complete ) ? ;
acc = AllocatedPoint ::conditionally_select (
cs . namespace ( | | format ! ( "acc_complete_iteration_{}" , i ) ) ,
& temp ,
& acc ,
& Boolean ::from ( bit . clone ( ) ) ,
) ? ;
p_complete = p_complete . double ( cs . namespace ( | | format ! ( "double_complete {}" , i ) ) ) ? ;
}
Ok ( res )
Ok ( acc )
}
/// If condition outputs a otherwise outputs b
@ -639,6 +718,199 @@ where
}
}
#[ derive(Clone) ]
/// AllocatedPoint but one that is guaranteed to be not infinity
pub struct AllocatedPointNonInfinity < Fp >
where
Fp : PrimeField ,
{
x : AllocatedNum < Fp > ,
y : AllocatedNum < Fp > ,
}
impl < Fp > AllocatedPointNonInfinity < Fp >
where
Fp : PrimeField ,
{
/// Creates a new AllocatedPointNonInfinity from the specified coordinates
pub fn new ( x : AllocatedNum < Fp > , y : AllocatedNum < Fp > ) -> Self {
Self { x , y }
}
/// Allocates a new point on the curve using coordinates provided by `coords`.
pub fn alloc < CS > ( mut cs : CS , coords : Option < ( Fp , Fp ) > ) -> Result < Self , SynthesisError >
where
CS : ConstraintSystem < Fp > ,
{
let x = AllocatedNum ::alloc ( cs . namespace ( | | "x" ) , | | {
coords . map_or ( Err ( SynthesisError ::AssignmentMissing ) , | c | Ok ( c . 0 ) )
} ) ? ;
let y = AllocatedNum ::alloc ( cs . namespace ( | | "y" ) , | | {
coords . map_or ( Err ( SynthesisError ::AssignmentMissing ) , | c | Ok ( c . 1 ) )
} ) ? ;
Ok ( Self { x , y } )
}
/// Turns an AllocatedPoint into an AllocatedPointNonInfinity (assumes it is not infinity)
pub fn from_allocated_point ( p : & AllocatedPoint < Fp > ) -> Self {
Self {
x : p . x . clone ( ) ,
y : p . y . clone ( ) ,
}
}
/// Returns an AllocatedPoint from an AllocatedPointNonInfinity
pub fn to_allocated_point (
& self ,
is_infinity : & AllocatedNum < Fp > ,
) -> Result < AllocatedPoint < Fp > , SynthesisError > {
Ok ( AllocatedPoint {
x : self . x . clone ( ) ,
y : self . y . clone ( ) ,
is_infinity : is_infinity . clone ( ) ,
} )
}
/// Returns coordinates associated with the point.
pub fn get_coordinates ( & self ) -> ( & AllocatedNum < Fp > , & AllocatedNum < Fp > ) {
( & self . x , & self . y )
}
/// Add two points assuming self != +/- other
pub fn add_incomplete < CS > ( & self , mut cs : CS , other : & Self ) -> Result < Self , SynthesisError >
where
CS : ConstraintSystem < Fp > ,
{
// allocate a free variable that an honest prover sets to lambda = (y2-y1)/(x2-x1)
let lambda = AllocatedNum ::alloc ( cs . namespace ( | | "lambda" ) , | | {
if * other . x . get_value ( ) . get ( ) ? = = * self . x . get_value ( ) . get ( ) ? {
Ok ( Fp ::one ( ) )
} else {
Ok (
( * other . y . get_value ( ) . get ( ) ? - * self . y . get_value ( ) . get ( ) ? )
* ( * other . x . get_value ( ) . get ( ) ? - * self . x . get_value ( ) . get ( ) ? )
. invert ( )
. unwrap ( ) ,
)
}
} ) ? ;
cs . enforce (
| | "Check that lambda is computed correctly" ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + other . x . get_variable ( ) - self . x . get_variable ( ) ,
| lc | lc + other . y . get_variable ( ) - self . y . get_variable ( ) ,
) ;
//************************************************************************/
// x = lambda * lambda - self.x - other.x;
//************************************************************************/
let x = AllocatedNum ::alloc ( cs . namespace ( | | "x" ) , | | {
Ok (
* lambda . get_value ( ) . get ( ) ? * lambda . get_value ( ) . get ( ) ?
- * self . x . get_value ( ) . get ( ) ?
- * other . x . get_value ( ) . get ( ) ? ,
)
} ) ? ;
cs . enforce (
| | "check that x is correct" ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + x . get_variable ( ) + self . x . get_variable ( ) + other . x . get_variable ( ) ,
) ;
//************************************************************************/
// y = lambda * (self.x - x) - self.y;
//************************************************************************/
let y = AllocatedNum ::alloc ( cs . namespace ( | | "y" ) , | | {
Ok (
* lambda . get_value ( ) . get ( ) ? * ( * self . x . get_value ( ) . get ( ) ? - * x . get_value ( ) . get ( ) ? )
- * self . y . get_value ( ) . get ( ) ? ,
)
} ) ? ;
cs . enforce (
| | "Check that y is correct" ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + self . x . get_variable ( ) - x . get_variable ( ) ,
| lc | lc + y . get_variable ( ) + self . y . get_variable ( ) ,
) ;
Ok ( Self { x , y } )
}
/// doubles the point; since this is called with a point not at infinity, it is guaranteed to be not infinity
pub fn double_incomplete < CS > ( & self , mut cs : CS ) -> Result < Self , SynthesisError >
where
CS : ConstraintSystem < Fp > ,
{
// lambda = (3 x^2 + a) / 2 * y. For pasta curves, a = 0
let x_sq = self . x . square ( cs . namespace ( | | "x_sq" ) ) ? ;
let lambda = AllocatedNum ::alloc ( cs . namespace ( | | "lambda" ) , | | {
let n = Fp ::from ( 3 ) * x_sq . get_value ( ) . get ( ) ? ;
let d = Fp ::from ( 2 ) * * self . y . get_value ( ) . get ( ) ? ;
if d = = Fp ::zero ( ) {
Ok ( Fp ::one ( ) )
} else {
Ok ( n * d . invert ( ) . unwrap ( ) )
}
} ) ? ;
cs . enforce (
| | "Check that lambda is computed correctly" ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + ( Fp ::from ( 2 ) , self . y . get_variable ( ) ) ,
| lc | lc + ( Fp ::from ( 3 ) , x_sq . get_variable ( ) ) ,
) ;
let x = AllocatedNum ::alloc ( cs . namespace ( | | "x" ) , | | {
Ok (
* lambda . get_value ( ) . get ( ) ? * * lambda . get_value ( ) . get ( ) ?
- * self . x . get_value ( ) . get ( ) ?
- * self . x . get_value ( ) . get ( ) ? ,
)
} ) ? ;
cs . enforce (
| | "check that x is correct" ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + x . get_variable ( ) + ( Fp ::from ( 2 ) , self . x . get_variable ( ) ) ,
) ;
let y = AllocatedNum ::alloc ( cs . namespace ( | | "y" ) , | | {
Ok (
* lambda . get_value ( ) . get ( ) ? * ( * self . x . get_value ( ) . get ( ) ? - * x . get_value ( ) . get ( ) ? )
- * self . y . get_value ( ) . get ( ) ? ,
)
} ) ? ;
cs . enforce (
| | "Check that y is correct" ,
| lc | lc + lambda . get_variable ( ) ,
| lc | lc + self . x . get_variable ( ) - x . get_variable ( ) ,
| lc | lc + y . get_variable ( ) + self . y . get_variable ( ) ,
) ;
Ok ( Self { x , y } )
}
/// If condition outputs a otherwise outputs b
pub fn conditionally_select < CS : ConstraintSystem < Fp > > (
mut cs : CS ,
a : & Self ,
b : & Self ,
condition : & Boolean ,
) -> Result < Self , SynthesisError > {
let x = conditionally_select ( cs . namespace ( | | "select x" ) , & a . x , & b . x , condition ) ? ;
let y = conditionally_select ( cs . namespace ( | | "select y" ) , & a . y , & b . y , condition ) ? ;
Ok ( Self { x , y } )
}
}
#[ cfg(test) ]
mod tests {
use super ::* ;
@ -696,14 +968,16 @@ mod tests {
assert_eq ! ( e_pasta , e_pasta_2 ) ;
}
use crate ::bellperson ::{ shape_cs ::ShapeCS , solver ::SatisfyingAssignment } ;
use crate ::bellperson ::{
r1cs ::{ NovaShape , NovaWitness } ,
{ shape_cs ::ShapeCS , solver ::SatisfyingAssignment } ,
} ;
use ff ::{ Field , PrimeFieldBits } ;
use pasta_curves ::{ arithmetic ::CurveAffine , group ::Curve , EpAffine } ;
use std ::ops ::Mul ;
type G = pasta_curves ::pallas ::Point ;
type Fp = pasta_curves ::pallas ::Scalar ;
type Fq = pasta_curves ::vesta ::Scalar ;
use crate ::bellperson ::r1cs ::{ NovaShape , NovaWitness } ;
fn synthesize_smul < Fp , Fq , CS > ( mut cs : CS ) -> ( AllocatedPoint < Fp > , AllocatedPoint < Fp > , Fq )
where
@ -713,8 +987,9 @@ mod tests {
{
let a = AllocatedPoint ::< Fp > ::random_vartime ( cs . namespace ( | | "a" ) ) . unwrap ( ) ;
a . inputize ( cs . namespace ( | | "inputize a" ) ) . unwrap ( ) ;
let s = Fq ::random ( & mut OsRng ) ;
// Allocate random bits and only keep 128 bit s
// Allocate bits for s
let bits : Vec < AllocatedBit > = s
. to_le_bits ( )
. into_iter ( )