Browse Source

Add a Sha256 bench (#188)

* add sha256 bench

* feat: Refactor sha256 benchmark and update dependencies

- Refactored the `sha256.rs` benchmarking file by replacing the former `hex_literal::hex` usage with a newly created `decode_hex` function.
- Updated the "Test vectors" section to work with the new `decode_hex` function to compute digests in `Sha256Circuit` instances.
- adapted to new APIs for RecursiveSNARK
- Amended the `Cargo.toml` file to include the `sha2` package dependency, version `0.10.7`.
- added the bench target

* cargo fmt

---------

Co-authored-by: Srinath Setty <srinath@microsoft.com>
main
François Garillot 1 year ago
committed by GitHub
parent
commit
905ec2d5a1
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 238 additions and 0 deletions
  1. +5
    -0
      Cargo.toml
  2. +233
    -0
      benches/sha256.rs

+ 5
- 0
Cargo.toml

@ -42,6 +42,7 @@ rand = "0.8.4"
hex = "0.4.3"
pprof = { version = "0.11" }
cfg-if = "1.0.0"
sha2 = "0.10.7"
[[bench]]
name = "recursive-snark"
@ -55,6 +56,10 @@ harness = false
name = "compute-digest"
harness = false
[[bench]]
name = "sha256"
harness = false
[features]
default = []
# Compiles in portable mode, w/o ISA extensions => binary can be executed on all systems.

+ 233
- 0
benches/sha256.rs

@ -0,0 +1,233 @@
//! Benchmarks Nova's prover for proving SHA-256 with varying sized messages.
//! We run a single step with the step performing the entire computation.
//! This code invokes a hand-written SHA-256 gadget from bellman/bellperson.
//! It also uses code from bellman/bellperson to compare circuit-generated digest with sha2 crate's output
#![allow(non_snake_case)]
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
use ::bellperson::{
gadgets::{
boolean::{AllocatedBit, Boolean},
num::{AllocatedNum, Num},
sha256::sha256,
Assignment,
},
ConstraintSystem, SynthesisError,
};
use core::time::Duration;
use criterion::*;
use ff::{PrimeField, PrimeFieldBits};
use nova_snark::{
traits::{
circuit::{StepCircuit, TrivialTestCircuit},
Group,
},
PublicParams, RecursiveSNARK,
};
use sha2::{Digest, Sha256};
#[derive(Clone, Debug)]
struct Sha256Circuit<Scalar: PrimeField> {
preimage: Vec<u8>,
digest: Scalar,
}
impl<Scalar: PrimeField + PrimeFieldBits> StepCircuit<Scalar> for Sha256Circuit<Scalar> {
fn arity(&self) -> usize {
1
}
fn synthesize<CS: ConstraintSystem<Scalar>>(
&self,
cs: &mut CS,
_z: &[AllocatedNum<Scalar>],
) -> Result<Vec<AllocatedNum<Scalar>>, SynthesisError> {
let mut z_out: Vec<AllocatedNum<Scalar>> = Vec::new();
let bit_values: Vec<_> = self
.preimage
.clone()
.into_iter()
.flat_map(|byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8))
.map(Some)
.collect();
assert_eq!(bit_values.len(), self.preimage.len() * 8);
let preimage_bits = bit_values
.into_iter()
.enumerate()
.map(|(i, b)| AllocatedBit::alloc(cs.namespace(|| format!("preimage bit {i}")), b))
.map(|b| b.map(Boolean::from))
.collect::<Result<Vec<_>, _>>()?;
let hash_bits = sha256(cs.namespace(|| "sha256"), &preimage_bits)?;
for (i, hash_bits) in hash_bits.chunks(256_usize).enumerate() {
let mut num = Num::<Scalar>::zero();
let mut coeff = Scalar::ONE;
for bit in hash_bits {
num = num.add_bool_with_coeff(CS::one(), bit, coeff);
coeff = coeff.double();
}
let hash = AllocatedNum::alloc(cs.namespace(|| format!("input {i}")), || {
Ok(*num.get_value().get()?)
})?;
// num * 1 = hash
cs.enforce(
|| format!("packing constraint {i}"),
|_| num.lc(Scalar::ONE),
|lc| lc + CS::one(),
|lc| lc + hash.get_variable(),
);
z_out.push(hash);
}
// sanity check with the hasher
let mut hasher = Sha256::new();
hasher.update(&self.preimage);
let hash_result = hasher.finalize();
let mut s = hash_result
.iter()
.flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8));
for b in hash_bits {
match b {
Boolean::Is(b) => {
assert!(s.next().unwrap() == b.get_value().unwrap());
}
Boolean::Not(b) => {
assert!(s.next().unwrap() != b.get_value().unwrap());
}
Boolean::Constant(_b) => {
panic!("Can't reach here")
}
}
}
Ok(z_out)
}
fn output(&self, _z: &[Scalar]) -> Vec<Scalar> {
vec![self.digest]
}
}
type C1 = Sha256Circuit<<G1 as Group>::Scalar>;
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
criterion_group! {
name = recursive_snark;
config = Criterion::default().warm_up_time(Duration::from_millis(3000));
targets = bench_recursive_snark
}
criterion_main!(recursive_snark);
fn bench_recursive_snark(c: &mut Criterion) {
let bytes_to_scalar = |bytes: [u8; 32]| -> <G1 as Group>::Scalar {
let mut bytes_le = bytes;
bytes_le.reverse();
<G1 as Group>::Scalar::from_repr(bytes_le).unwrap()
};
let decode_hex = |s: &str| -> <G1 as Group>::Scalar {
let bytes = (0..s.len())
.step_by(2)
.map(|i| u8::from_str_radix(&s[i..i + 2], 16))
.collect::<Result<Vec<u8>, _>>()
.unwrap();
let bytes_arr: [u8; 32] = bytes.try_into().unwrap();
bytes_to_scalar(bytes_arr)
};
// Test vectors
let circuits = vec![
Sha256Circuit {
preimage: vec![0u8; 64],
digest: decode_hex("12df9ae4958c1957170f9b04c4bc00c27315c5d75a391f4b672f952842bfa5ac"),
},
Sha256Circuit {
preimage: vec![0u8; 128],
digest: decode_hex("13abfac9782cb9c13c4508bde596f1914fe2f744f6a661c0c9a16659745c4e1b"),
},
Sha256Circuit {
preimage: vec![0u8; 256],
digest: decode_hex("0f5a007b5aef126a58f9bbd937842967c44253e7f97d98b5cd10bfe44d6782c8"),
},
Sha256Circuit {
preimage: vec![0u8; 512],
digest: decode_hex("06a6cfaad91d49366f18443cd4e11576ff27c174bb9fe2bc54735a79e3e456e0"),
},
Sha256Circuit {
preimage: vec![0u8; 1024],
digest: decode_hex("3763c73508f5fbb36daae8257d6c5c07db08ec5df0549ccf692b9fa218fd0ef7"),
},
Sha256Circuit {
preimage: vec![0u8; 2048],
digest: decode_hex("35c18d6c3cf49e42b3ffcb54ea04bdc16617efba0e673abc8c858257955005a5"),
},
Sha256Circuit {
preimage: vec![0u8; 4096],
digest: decode_hex("25349112d1bd5ba15e3e2d3effa01af1da02c097ce6208cdf28f34b74d35feb2"),
},
Sha256Circuit {
preimage: vec![0u8; 8192],
digest: decode_hex("22bc891155c7d423039a2206ed4a5342755948baeb13a54b61dbead7c3d3b8f6"),
},
Sha256Circuit {
preimage: vec![0u8; 16384],
digest: decode_hex("3fda713dc72ddcd42ce625c75f7e41d526d30647278a3dfcda95904e59ade7f1"),
},
Sha256Circuit {
preimage: vec![0u8; 32768],
digest: decode_hex("1e2091bd3e3cedffebb7316b52414fff82511cbd232561874a4ae11ae2040ac1"),
},
Sha256Circuit {
preimage: vec![0u8; 65536],
digest: decode_hex("0c33953975c438ce357912f27b0fbcf98bae6eb68a1a913386672ee406a4f479"),
},
];
for circuit_primary in circuits {
let mut group = c.benchmark_group(format!(
"NovaProve-Sha256-message-len-{}",
circuit_primary.preimage.len()
));
group.sample_size(10);
// Produce public parameters
let pp =
PublicParams::<G1, G2, C1, C2>::setup(circuit_primary.clone(), TrivialTestCircuit::default());
let circuit_secondary = TrivialTestCircuit::default();
let z0_primary = vec![<G1 as Group>::Scalar::from(2u64)];
let z0_secondary = vec![<G2 as Group>::Scalar::from(2u64)];
group.bench_function("Prove", |b| {
b.iter(|| {
let mut recursive_snark = RecursiveSNARK::new(
black_box(&pp),
black_box(&circuit_primary),
black_box(&circuit_secondary),
black_box(z0_primary.clone()),
black_box(z0_secondary.clone()),
);
// produce a recursive SNARK for a step of the recursion
assert!(recursive_snark
.prove_step(
black_box(&pp),
black_box(&circuit_primary),
black_box(&circuit_secondary),
black_box(z0_primary.clone()),
black_box(z0_secondary.clone()),
)
.is_ok());
})
});
group.finish();
}
}

Loading…
Cancel
Save