Browse Source

Improve performance of recursive (#163)

* Improve performance of recursive

* Fix the test after rebase

* Fix CI/CD warnings

* Update benchmark to work with new interface of RecursiveSNARK

* Fix example to make sure step 1 is correct

* refactor: Removes unneeded pass-by value in verification

- Update function arguments to use borrowing instead of passing ownership

* Resolve the conflict with upstream branch

* refactor: Avoid extra input cloning in RecursiveSNARK::new

* Update criterion to 0.5.1 to prevent the panic with its plot

* Fix benchmark issue with new recursive_snark instance

* Fix CI/CD warning with

* refactor: Make mutation easier to observe

- Utilize mutable references to Points for better memory management

* chore: Downgrade clippy dependency for compatibility

---------

Co-authored-by: François Garillot <francois@garillot.net>
main
Chiro Hiro 1 year ago
committed by GitHub
parent
commit
af886d6ce7
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 364 additions and 343 deletions
  1. +1
    -1
      Cargo.toml
  2. +17
    -17
      benches/compressed-snark.rs
  3. +28
    -29
      benches/recursive-snark.rs
  4. +12
    -11
      examples/minroot.rs
  5. +3
    -3
      src/gadgets/ecc.rs
  6. +302
    -281
      src/lib.rs
  7. +1
    -1
      src/provider/pedersen.rs

+ 1
- 1
Cargo.toml

@ -37,7 +37,7 @@ thiserror = "1.0"
pasta-msm = { version = "0.1.4" }
[dev-dependencies]
criterion = "0.3.1"
criterion = { version = "0.4", features = ["html_reports"] }
rand = "0.8.4"
hex = "0.4.3"

+ 17
- 17
benches/compressed-snark.rs

@ -43,46 +43,46 @@ fn bench_compressed_snark(c: &mut Criterion) {
let mut group = c.benchmark_group(format!("CompressedSNARK-StepCircuitSize-{num_cons}"));
group.sample_size(num_samples);
let c_primary = NonTrivialTestCircuit::new(num_cons);
let c_secondary = TrivialTestCircuit::default();
// Produce public parameters
let pp = PublicParams::<G1, G2, C1, C2>::setup(
NonTrivialTestCircuit::new(num_cons),
TrivialTestCircuit::default(),
);
let pp = PublicParams::<G1, G2, C1, C2>::setup(c_primary.clone(), c_secondary.clone());
// Produce prover and verifier keys for CompressedSNARK
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
// produce a recursive SNARK
let num_steps = 3;
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
let mut recursive_snark: RecursiveSNARK<G1, G2, C1, C2> = RecursiveSNARK::new(
&pp,
&c_primary,
&c_secondary,
vec![<G1 as Group>::Scalar::from(2u64)],
vec![<G2 as Group>::Scalar::from(2u64)],
);
for i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
NonTrivialTestCircuit::new(num_cons),
TrivialTestCircuit::default(),
&c_primary,
&c_secondary,
vec![<G1 as Group>::Scalar::from(2u64)],
vec![<G2 as Group>::Scalar::from(2u64)],
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
// verify the recursive snark at each step of recursion
let res = recursive_snark_unwrapped.verify(
let res = recursive_snark.verify(
&pp,
i + 1,
vec![<G1 as Group>::Scalar::from(2u64)],
vec![<G2 as Group>::Scalar::from(2u64)],
&vec![<G1 as Group>::Scalar::from(2u64)][..],
&vec![<G2 as Group>::Scalar::from(2u64)][..],
);
assert!(res.is_ok());
// set the running variable for the next iteration
recursive_snark = Some(recursive_snark_unwrapped);
}
// Bench time to produce a compressed SNARK
let recursive_snark = recursive_snark.unwrap();
group.bench_function("Prove", |b| {
b.iter(|| {
assert!(CompressedSNARK::<_, _, _, _, S1, S2>::prove(

+ 28
- 29
benches/recursive-snark.rs

@ -38,61 +38,60 @@ fn bench_recursive_snark(c: &mut Criterion) {
let mut group = c.benchmark_group(format!("RecursiveSNARK-StepCircuitSize-{num_cons}"));
group.sample_size(10);
let c_primary = NonTrivialTestCircuit::new(num_cons);
let c_secondary = TrivialTestCircuit::default();
// Produce public parameters
let pp = PublicParams::<G1, G2, C1, C2>::setup(
NonTrivialTestCircuit::new(num_cons),
TrivialTestCircuit::default(),
);
let pp = PublicParams::<G1, G2, C1, C2>::setup(c_primary.clone(), c_secondary.clone());
// Bench time to produce a recursive SNARK;
// we execute a certain number of warm-up steps since executing
// the first step is cheaper than other steps owing to the presence of
// a lot of zeros in the satisfying assignment
let num_warmup_steps = 10;
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
let mut recursive_snark: RecursiveSNARK<G1, G2, C1, C2> = RecursiveSNARK::new(
&pp,
&c_primary,
&c_secondary,
vec![<G1 as Group>::Scalar::from(2u64)],
vec![<G2 as Group>::Scalar::from(2u64)],
);
for i in 0..num_warmup_steps {
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
NonTrivialTestCircuit::new(num_cons),
TrivialTestCircuit::default(),
&c_primary,
&c_secondary,
vec![<G1 as Group>::Scalar::from(2u64)],
vec![<G2 as Group>::Scalar::from(2u64)],
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
// verify the recursive snark at each step of recursion
let res = recursive_snark_unwrapped.verify(
let res = recursive_snark.verify(
&pp,
i + 1,
vec![<G1 as Group>::Scalar::from(2u64)],
vec![<G2 as Group>::Scalar::from(2u64)],
&[<G1 as Group>::Scalar::from(2u64)],
&[<G2 as Group>::Scalar::from(2u64)],
);
assert!(res.is_ok());
// set the running variable for the next iteration
recursive_snark = Some(recursive_snark_unwrapped);
}
group.bench_function("Prove", |b| {
b.iter(|| {
// produce a recursive SNARK for a step of the recursion
assert!(RecursiveSNARK::prove_step(
black_box(&pp),
black_box(recursive_snark.clone()),
black_box(NonTrivialTestCircuit::new(num_cons)),
black_box(TrivialTestCircuit::default()),
black_box(vec![<G1 as Group>::Scalar::from(2u64)]),
black_box(vec![<G2 as Group>::Scalar::from(2u64)]),
)
.is_ok());
assert!(black_box(&mut recursive_snark.clone())
.prove_step(
black_box(&pp),
black_box(&c_primary),
black_box(&c_secondary),
black_box(vec![<G1 as Group>::Scalar::from(2u64)]),
black_box(vec![<G2 as Group>::Scalar::from(2u64)]),
)
.is_ok());
})
});
let recursive_snark = recursive_snark.unwrap();
// Benchmark the verification time
group.bench_function("Verify", |b| {
b.iter(|| {
@ -100,8 +99,8 @@ fn bench_recursive_snark(c: &mut Criterion) {
.verify(
black_box(&pp),
black_box(num_warmup_steps),
black_box(vec![<G1 as Group>::Scalar::from(2u64)]),
black_box(vec![<G2 as Group>::Scalar::from(2u64)]),
black_box(&vec![<G1 as Group>::Scalar::from(2u64)][..]),
black_box(&vec![<G2 as Group>::Scalar::from(2u64)][..]),
)
.is_ok());
});

+ 12
- 11
examples/minroot.rs

@ -172,7 +172,7 @@ fn main() {
G2,
MinRootCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary, circuit_secondary.clone());
>::setup(circuit_primary.clone(), circuit_secondary.clone());
println!("PublicParams::setup, took {:?} ", start.elapsed());
println!(
@ -218,15 +218,20 @@ fn main() {
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
// produce a recursive SNARK
println!("Generating a RecursiveSNARK...");
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
let mut recursive_snark: RecursiveSNARK<G1, G2, C1, C2> = RecursiveSNARK::<G1, G2, C1, C2>::new(
&pp,
&minroot_circuits[0],
&circuit_secondary,
z0_primary.clone(),
z0_secondary.clone(),
);
for (i, circuit_primary) in minroot_circuits.iter().take(num_steps).enumerate() {
let start = Instant::now();
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
circuit_primary,
&circuit_secondary,
z0_primary.clone(),
z0_secondary.clone(),
);
@ -237,16 +242,12 @@ fn main() {
res.is_ok(),
start.elapsed()
);
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
println!("Verifying a RecursiveSNARK...");
let start = Instant::now();
let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone());
let res = recursive_snark.verify(&pp, num_steps, &z0_primary, &z0_secondary);
println!(
"RecursiveSNARK::verify: {:?}, took {:?}",
res.is_ok(),

+ 3
- 3
src/gadgets/ecc.rs

@ -1067,13 +1067,13 @@ mod tests {
{
let a = alloc_random_point(cs.namespace(|| "a")).unwrap();
inputize_allocted_point(&a, cs.namespace(|| "inputize a")).unwrap();
let mut b = a.clone();
let mut b = &mut a.clone();
b.y = AllocatedNum::alloc(cs.namespace(|| "allocate negation of a"), || {
Ok(G::Base::ZERO)
})
.unwrap();
inputize_allocted_point(&b, cs.namespace(|| "inputize b")).unwrap();
let e = a.add(cs.namespace(|| "add a to b"), &b).unwrap();
inputize_allocted_point(b, cs.namespace(|| "inputize b")).unwrap();
let e = a.add(cs.namespace(|| "add a to b"), b).unwrap();
e
}

+ 302
- 281
src/lib.rs

@ -192,197 +192,207 @@ where
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
{
/// Create new instance of recursive SNARK
pub fn new(
pp: &PublicParams<G1, G2, C1, C2>,
c_primary: &C1,
c_secondary: &C2,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Self {
// Expected outputs of the two circuits
let zi_primary = c_primary.output(&z0_primary);
let zi_secondary = c_secondary.output(&z0_secondary);
// base case for the primary
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
scalar_as_base::<G1>(pp.digest),
G1::Scalar::ZERO,
z0_primary,
None,
None,
None,
None,
);
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_primary.clone(),
Some(inputs_primary),
c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
let (u_primary, w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
.map_err(|_e| NovaError::UnSat)
.expect("Nova error unsat");
// base case for the secondary
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.digest,
G2::Scalar::ZERO,
z0_secondary,
None,
None,
Some(u_primary.clone()),
None,
);
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_secondary.clone(),
Some(inputs_secondary),
c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
let (u_secondary, w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
.map_err(|_e| NovaError::UnSat)
.expect("Nova error unsat");
// IVC proof for the primary circuit
let l_w_primary = w_primary;
let l_u_primary = u_primary;
let r_W_primary = RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
let r_U_primary =
RelaxedR1CSInstance::from_r1cs_instance(&pp.ck_primary, &pp.r1cs_shape_primary, &l_u_primary);
// IVC proof of the secondary circuit
let l_w_secondary = w_secondary;
let l_u_secondary = u_secondary;
let r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
let r_U_secondary =
RelaxedR1CSInstance::<G2>::default(&pp.ck_secondary, &pp.r1cs_shape_secondary);
if zi_primary.len() != pp.F_arity_primary || zi_secondary.len() != pp.F_arity_secondary {
panic!("Invalid step length");
}
Self {
r_W_primary,
r_U_primary,
r_W_secondary,
r_U_secondary,
l_w_secondary,
l_u_secondary,
i: 0,
zi_primary,
zi_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
}
}
/// Create a new `RecursiveSNARK` (or updates the provided `RecursiveSNARK`)
/// by executing a step of the incremental computation
pub fn prove_step(
&mut self,
pp: &PublicParams<G1, G2, C1, C2>,
recursive_snark: Option<Self>,
c_primary: C1,
c_secondary: C2,
c_primary: &C1,
c_secondary: &C2,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<Self, NovaError> {
) -> Result<(), NovaError> {
if z0_primary.len() != pp.F_arity_primary || z0_secondary.len() != pp.F_arity_secondary {
return Err(NovaError::InvalidInitialInputLength);
}
match recursive_snark {
None => {
// base case for the primary
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
scalar_as_base::<G1>(pp.digest),
G1::Scalar::ZERO,
z0_primary.clone(),
None,
None,
None,
None,
);
// Frist step was already done in the constructor
if self.i == 0 {
self.i = 1;
return Ok(());
}
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_primary.clone(),
Some(inputs_primary),
c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
let (u_primary, w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
.map_err(|_e| NovaError::UnSat)?;
// base case for the secondary
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.digest,
G2::Scalar::ZERO,
z0_secondary.clone(),
None,
None,
Some(u_primary.clone()),
None,
);
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_secondary.clone(),
Some(inputs_secondary),
c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
let (u_secondary, w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
.map_err(|_e| NovaError::UnSat)?;
// IVC proof for the primary circuit
let l_w_primary = w_primary;
let l_u_primary = u_primary;
let r_W_primary =
RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
let r_U_primary = RelaxedR1CSInstance::from_r1cs_instance(
&pp.ck_primary,
&pp.r1cs_shape_primary,
&l_u_primary,
);
// fold the secondary circuit's instance
let (nifs_secondary, (r_U_secondary, r_W_secondary)) = NIFS::prove(
&pp.ck_secondary,
&pp.ro_consts_secondary,
&scalar_as_base::<G1>(pp.digest),
&pp.r1cs_shape_secondary,
&self.r_U_secondary,
&self.r_W_secondary,
&self.l_u_secondary,
&self.l_w_secondary,
)
.expect("Unable to fold secondary");
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
scalar_as_base::<G1>(pp.digest),
G1::Scalar::from(self.i as u64),
z0_primary,
Some(self.zi_primary.clone()),
Some(self.r_U_secondary.clone()),
Some(self.l_u_secondary.clone()),
Some(Commitment::<G2>::decompress(&nifs_secondary.comm_T)?),
);
// IVC proof of the secondary circuit
let l_w_secondary = w_secondary;
let l_u_secondary = u_secondary;
let r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
let r_U_secondary =
RelaxedR1CSInstance::<G2>::default(&pp.ck_secondary, &pp.r1cs_shape_secondary);
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_primary.clone(),
Some(inputs_primary),
c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
let (l_u_primary, l_w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
.map_err(|_e| NovaError::UnSat)
.expect("Nova error unsat");
// fold the primary circuit's instance
let (nifs_primary, (r_U_primary, r_W_primary)) = NIFS::prove(
&pp.ck_primary,
&pp.ro_consts_primary,
&pp.digest,
&pp.r1cs_shape_primary,
&self.r_U_primary,
&self.r_W_primary,
&l_u_primary,
&l_w_primary,
)
.expect("Unable to fold primary");
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.digest,
G2::Scalar::from(self.i as u64),
z0_secondary,
Some(self.zi_secondary.clone()),
Some(self.r_U_primary.clone()),
Some(l_u_primary),
Some(Commitment::<G1>::decompress(&nifs_primary.comm_T)?),
);
// Outputs of the two circuits thus far
let zi_primary = c_primary.output(&z0_primary);
let zi_secondary = c_secondary.output(&z0_secondary);
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_secondary.clone(),
Some(inputs_secondary),
c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
if zi_primary.len() != pp.F_arity_primary || zi_secondary.len() != pp.F_arity_secondary {
return Err(NovaError::InvalidStepOutputLength);
}
let (l_u_secondary, l_w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
.map_err(|_e| NovaError::UnSat)?;
Ok(Self {
r_W_primary,
r_U_primary,
r_W_secondary,
r_U_secondary,
l_w_secondary,
l_u_secondary,
i: 1_usize,
zi_primary,
zi_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
})
}
Some(r_snark) => {
// fold the secondary circuit's instance
let (nifs_secondary, (r_U_secondary, r_W_secondary)) = NIFS::prove(
&pp.ck_secondary,
&pp.ro_consts_secondary,
&scalar_as_base::<G1>(pp.digest),
&pp.r1cs_shape_secondary,
&r_snark.r_U_secondary,
&r_snark.r_W_secondary,
&r_snark.l_u_secondary,
&r_snark.l_w_secondary,
)?;
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
scalar_as_base::<G1>(pp.digest),
G1::Scalar::from(r_snark.i as u64),
z0_primary,
Some(r_snark.zi_primary.clone()),
Some(r_snark.r_U_secondary.clone()),
Some(r_snark.l_u_secondary.clone()),
Some(Commitment::<G2>::decompress(&nifs_secondary.comm_T)?),
);
// update the running instances and witnesses
self.zi_primary = c_primary.output(&self.zi_primary);
self.zi_secondary = c_secondary.output(&self.zi_secondary);
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_primary.clone(),
Some(inputs_primary),
c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
self.l_u_secondary = l_u_secondary;
self.l_w_secondary = l_w_secondary;
let (l_u_primary, l_w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
.map_err(|_e| NovaError::UnSat)?;
self.r_U_primary = r_U_primary;
self.r_W_primary = r_W_primary;
// fold the primary circuit's instance
let (nifs_primary, (r_U_primary, r_W_primary)) = NIFS::prove(
&pp.ck_primary,
&pp.ro_consts_primary,
&pp.digest,
&pp.r1cs_shape_primary,
&r_snark.r_U_primary,
&r_snark.r_W_primary,
&l_u_primary,
&l_w_primary,
)?;
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.digest,
G2::Scalar::from(r_snark.i as u64),
z0_secondary,
Some(r_snark.zi_secondary.clone()),
Some(r_snark.r_U_primary.clone()),
Some(l_u_primary),
Some(Commitment::<G1>::decompress(&nifs_primary.comm_T)?),
);
self.i += 1;
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_secondary.clone(),
Some(inputs_secondary),
c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
let (l_u_secondary, l_w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
.map_err(|_e| NovaError::UnSat)?;
// update the running instances and witnesses
let zi_primary = c_primary.output(&r_snark.zi_primary);
let zi_secondary = c_secondary.output(&r_snark.zi_secondary);
Ok(Self {
r_W_primary,
r_U_primary,
r_W_secondary,
r_U_secondary,
l_w_secondary,
l_u_secondary,
i: r_snark.i + 1,
zi_primary,
zi_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
})
}
}
self.r_U_secondary = r_U_secondary;
self.r_W_secondary = r_W_secondary;
Ok(())
}
/// Verify the correctness of the `RecursiveSNARK`
@ -390,8 +400,8 @@ where
&self,
pp: &PublicParams<G1, G2, C1, C2>,
num_steps: usize,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
z0_primary: &[G1::Scalar],
z0_secondary: &[G2::Scalar],
) -> Result<(Vec<G1::Scalar>, Vec<G2::Scalar>), NovaError> {
// number of steps cannot be zero
if num_steps == 0 {
@ -419,7 +429,7 @@ where
);
hasher.absorb(pp.digest);
hasher.absorb(G1::Scalar::from(num_steps as u64));
for e in &z0_primary {
for e in z0_primary {
hasher.absorb(*e);
}
for e in &self.zi_primary {
@ -433,7 +443,7 @@ where
);
hasher2.absorb(scalar_as_base::<G1>(pp.digest));
hasher2.absorb(G2::Scalar::from(num_steps as u64));
for e in &z0_secondary {
for e in z0_secondary {
hasher2.absorb(*e);
}
for e in &self.zi_secondary {
@ -906,23 +916,30 @@ mod tests {
let num_steps = 1;
// produce a recursive SNARK
let res = RecursiveSNARK::prove_step(
let mut recursive_snark = RecursiveSNARK::new(
&pp,
None,
test_circuit1,
test_circuit2,
&test_circuit1,
&test_circuit2,
vec![<G1 as Group>::Scalar::ZERO],
vec![<G2 as Group>::Scalar::ZERO],
);
let res = recursive_snark.prove_step(
&pp,
&test_circuit1,
&test_circuit2,
vec![<G1 as Group>::Scalar::ZERO],
vec![<G2 as Group>::Scalar::ZERO],
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::ZERO],
vec![<G2 as Group>::Scalar::ZERO],
&vec![<G1 as Group>::Scalar::ZERO][..],
&vec![<G2 as Group>::Scalar::ZERO][..],
);
assert!(res.is_ok());
}
@ -953,49 +970,45 @@ mod tests {
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
let mut recursive_snark = RecursiveSNARK::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::new(
&pp,
&circuit_primary,
&circuit_secondary,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
for i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
&circuit_primary,
&circuit_secondary,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
// verify the recursive snark at each step of recursion
let res = recursive_snark_unwrapped.verify(
let res = recursive_snark.verify(
&pp,
i + 1,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
&vec![<G1 as Group>::Scalar::ONE][..],
&vec![<G2 as Group>::Scalar::ZERO][..],
);
assert!(res.is_ok());
// set the running variable for the next iteration
recursive_snark = Some(recursive_snark_unwrapped);
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
&vec![<G1 as Group>::Scalar::ONE][..],
&vec![<G2 as Group>::Scalar::ZERO][..],
);
assert!(res.is_ok());
@ -1043,37 +1056,36 @@ mod tests {
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
let mut recursive_snark = RecursiveSNARK::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::new(
&pp,
&circuit_primary,
&circuit_secondary,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
for _i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
&circuit_primary,
&circuit_secondary,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
&vec![<G1 as Group>::Scalar::ONE][..],
&vec![<G2 as Group>::Scalar::ZERO][..],
);
assert!(res.is_ok());
@ -1138,37 +1150,36 @@ mod tests {
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
let mut recursive_snark = RecursiveSNARK::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::new(
&pp,
&circuit_primary,
&circuit_secondary,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
for _i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
&circuit_primary,
&circuit_secondary,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
&vec![<G1 as Group>::Scalar::ONE][..],
&vec![<G2 as Group>::Scalar::ZERO][..],
);
assert!(res.is_ok());
@ -1237,14 +1248,9 @@ mod tests {
let rng = &mut rand::rngs::OsRng;
let mut seed = F::random(rng);
for _i in 0..num_steps + 1 {
let mut power = seed;
power = power.square();
power = power.square();
power *= seed;
seed *= seed.clone().square().square();
powers.push(Self { y: power });
seed = power;
powers.push(Self { y: seed });
}
// reverse the powers to get roots
@ -1289,12 +1295,7 @@ mod tests {
fn output(&self, z: &[F]) -> Vec<F> {
// sanity check
let x = z[0];
let y_pow_5 = {
let y = self.y;
let y_sq = y.square();
let y_quad = y_sq.square();
y_quad * self.y
};
let y_pow_5 = self.y * self.y.clone().square().square();
assert_eq!(x, y_pow_5);
// return non-deterministic advice
@ -1324,33 +1325,37 @@ mod tests {
let z0_secondary = vec![<G2 as Group>::Scalar::ZERO];
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>,
> = None;
let mut recursive_snark: RecursiveSNARK<
G1,
G2,
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
> = RecursiveSNARK::<
G1,
G2,
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>::new(
&pp,
&roots[0],
&circuit_secondary,
z0_primary.clone(),
z0_secondary.clone(),
);
for circuit_primary in roots.iter().take(num_steps) {
let res = RecursiveSNARK::prove_step(
let res = recursive_snark.prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
circuit_primary,
&circuit_secondary.clone(),
z0_primary.clone(),
z0_secondary.clone(),
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone());
let res = recursive_snark.verify(&pp, num_steps, &z0_primary, &z0_secondary);
assert!(res.is_ok());
// produce the prover and verifier keys for compressed snark
@ -1379,34 +1384,50 @@ mod tests {
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
{
let test_circuit1 = TrivialTestCircuit::<<G1 as Group>::Scalar>::default();
let test_circuit2 = CubicCircuit::<<G2 as Group>::Scalar>::default();
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(TrivialTestCircuit::default(), CubicCircuit::default());
>::setup(test_circuit1.clone(), test_circuit2.clone());
let num_steps = 1;
// produce a recursive SNARK
let res = RecursiveSNARK::prove_step(
let mut recursive_snark = RecursiveSNARK::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::new(
&pp,
None,
TrivialTestCircuit::default(),
CubicCircuit::default(),
&test_circuit1,
&test_circuit2,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
// produce a recursive SNARK
let res = recursive_snark.prove_step(
&pp,
&test_circuit1,
&test_circuit2,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::ONE],
vec![<G2 as Group>::Scalar::ZERO],
&vec![<G1 as Group>::Scalar::ONE][..],
&vec![<G2 as Group>::Scalar::ZERO][..],
);
assert!(res.is_ok());

+ 1
- 1
src/provider/pedersen.rs

@ -69,7 +69,7 @@ impl Default for Commitment {
impl<G: Group> TranscriptReprTrait<G> for Commitment<G> {
fn to_transcript_bytes(&self) -> Vec<u8> {
let (x, y, is_infinity) = self.comm.to_coordinates();
let is_infinity_byte = if is_infinity { 0u8 } else { 1u8 };
let is_infinity_byte = (!is_infinity).into();
[
x.to_transcript_bytes(),
y.to_transcript_bytes(),

Loading…
Cancel
Save