mirror of
https://github.com/arnaucube/Nova.git
synced 2026-01-10 16:11:29 +01:00
Improve performance of recursive (#163)
* Improve performance of recursive * Fix the test after rebase * Fix CI/CD warnings * Update benchmark to work with new interface of RecursiveSNARK * Fix example to make sure step 1 is correct * refactor: Removes unneeded pass-by value in verification - Update function arguments to use borrowing instead of passing ownership * Resolve the conflict with upstream branch * refactor: Avoid extra input cloning in RecursiveSNARK::new * Update criterion to 0.5.1 to prevent the panic with its plot * Fix benchmark issue with new recursive_snark instance * Fix CI/CD warning with * refactor: Make mutation easier to observe - Utilize mutable references to Points for better memory management * chore: Downgrade clippy dependency for compatibility --------- Co-authored-by: François Garillot <francois@garillot.net>
This commit is contained in:
@@ -37,7 +37,7 @@ thiserror = "1.0"
|
||||
pasta-msm = { version = "0.1.4" }
|
||||
|
||||
[dev-dependencies]
|
||||
criterion = "0.3.1"
|
||||
criterion = { version = "0.4", features = ["html_reports"] }
|
||||
rand = "0.8.4"
|
||||
hex = "0.4.3"
|
||||
|
||||
|
||||
@@ -43,46 +43,46 @@ fn bench_compressed_snark(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group(format!("CompressedSNARK-StepCircuitSize-{num_cons}"));
|
||||
group.sample_size(num_samples);
|
||||
|
||||
let c_primary = NonTrivialTestCircuit::new(num_cons);
|
||||
let c_secondary = TrivialTestCircuit::default();
|
||||
|
||||
// Produce public parameters
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(
|
||||
NonTrivialTestCircuit::new(num_cons),
|
||||
TrivialTestCircuit::default(),
|
||||
);
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(c_primary.clone(), c_secondary.clone());
|
||||
|
||||
// Produce prover and verifier keys for CompressedSNARK
|
||||
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
|
||||
|
||||
// produce a recursive SNARK
|
||||
let num_steps = 3;
|
||||
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
||||
let mut recursive_snark: RecursiveSNARK<G1, G2, C1, C2> = RecursiveSNARK::new(
|
||||
&pp,
|
||||
&c_primary,
|
||||
&c_secondary,
|
||||
vec![<G1 as Group>::Scalar::from(2u64)],
|
||||
vec![<G2 as Group>::Scalar::from(2u64)],
|
||||
);
|
||||
|
||||
for i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
NonTrivialTestCircuit::new(num_cons),
|
||||
TrivialTestCircuit::default(),
|
||||
&c_primary,
|
||||
&c_secondary,
|
||||
vec![<G1 as Group>::Scalar::from(2u64)],
|
||||
vec![<G2 as Group>::Scalar::from(2u64)],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
||||
// verify the recursive snark at each step of recursion
|
||||
let res = recursive_snark_unwrapped.verify(
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
i + 1,
|
||||
vec![<G1 as Group>::Scalar::from(2u64)],
|
||||
vec![<G2 as Group>::Scalar::from(2u64)],
|
||||
&vec![<G1 as Group>::Scalar::from(2u64)][..],
|
||||
&vec![<G2 as Group>::Scalar::from(2u64)][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// set the running variable for the next iteration
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
}
|
||||
|
||||
// Bench time to produce a compressed SNARK
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
group.bench_function("Prove", |b| {
|
||||
b.iter(|| {
|
||||
assert!(CompressedSNARK::<_, _, _, _, S1, S2>::prove(
|
||||
|
||||
@@ -38,61 +38,60 @@ fn bench_recursive_snark(c: &mut Criterion) {
|
||||
let mut group = c.benchmark_group(format!("RecursiveSNARK-StepCircuitSize-{num_cons}"));
|
||||
group.sample_size(10);
|
||||
|
||||
let c_primary = NonTrivialTestCircuit::new(num_cons);
|
||||
let c_secondary = TrivialTestCircuit::default();
|
||||
|
||||
// Produce public parameters
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(
|
||||
NonTrivialTestCircuit::new(num_cons),
|
||||
TrivialTestCircuit::default(),
|
||||
);
|
||||
let pp = PublicParams::<G1, G2, C1, C2>::setup(c_primary.clone(), c_secondary.clone());
|
||||
|
||||
// Bench time to produce a recursive SNARK;
|
||||
// we execute a certain number of warm-up steps since executing
|
||||
// the first step is cheaper than other steps owing to the presence of
|
||||
// a lot of zeros in the satisfying assignment
|
||||
let num_warmup_steps = 10;
|
||||
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
||||
let mut recursive_snark: RecursiveSNARK<G1, G2, C1, C2> = RecursiveSNARK::new(
|
||||
&pp,
|
||||
&c_primary,
|
||||
&c_secondary,
|
||||
vec![<G1 as Group>::Scalar::from(2u64)],
|
||||
vec![<G2 as Group>::Scalar::from(2u64)],
|
||||
);
|
||||
|
||||
for i in 0..num_warmup_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
NonTrivialTestCircuit::new(num_cons),
|
||||
TrivialTestCircuit::default(),
|
||||
&c_primary,
|
||||
&c_secondary,
|
||||
vec![<G1 as Group>::Scalar::from(2u64)],
|
||||
vec![<G2 as Group>::Scalar::from(2u64)],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
||||
// verify the recursive snark at each step of recursion
|
||||
let res = recursive_snark_unwrapped.verify(
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
i + 1,
|
||||
vec![<G1 as Group>::Scalar::from(2u64)],
|
||||
vec![<G2 as Group>::Scalar::from(2u64)],
|
||||
&[<G1 as Group>::Scalar::from(2u64)],
|
||||
&[<G2 as Group>::Scalar::from(2u64)],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// set the running variable for the next iteration
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
}
|
||||
|
||||
group.bench_function("Prove", |b| {
|
||||
b.iter(|| {
|
||||
// produce a recursive SNARK for a step of the recursion
|
||||
assert!(RecursiveSNARK::prove_step(
|
||||
black_box(&pp),
|
||||
black_box(recursive_snark.clone()),
|
||||
black_box(NonTrivialTestCircuit::new(num_cons)),
|
||||
black_box(TrivialTestCircuit::default()),
|
||||
black_box(vec![<G1 as Group>::Scalar::from(2u64)]),
|
||||
black_box(vec![<G2 as Group>::Scalar::from(2u64)]),
|
||||
)
|
||||
.is_ok());
|
||||
assert!(black_box(&mut recursive_snark.clone())
|
||||
.prove_step(
|
||||
black_box(&pp),
|
||||
black_box(&c_primary),
|
||||
black_box(&c_secondary),
|
||||
black_box(vec![<G1 as Group>::Scalar::from(2u64)]),
|
||||
black_box(vec![<G2 as Group>::Scalar::from(2u64)]),
|
||||
)
|
||||
.is_ok());
|
||||
})
|
||||
});
|
||||
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// Benchmark the verification time
|
||||
group.bench_function("Verify", |b| {
|
||||
b.iter(|| {
|
||||
@@ -100,8 +99,8 @@ fn bench_recursive_snark(c: &mut Criterion) {
|
||||
.verify(
|
||||
black_box(&pp),
|
||||
black_box(num_warmup_steps),
|
||||
black_box(vec![<G1 as Group>::Scalar::from(2u64)]),
|
||||
black_box(vec![<G2 as Group>::Scalar::from(2u64)]),
|
||||
black_box(&vec![<G1 as Group>::Scalar::from(2u64)][..]),
|
||||
black_box(&vec![<G2 as Group>::Scalar::from(2u64)][..]),
|
||||
)
|
||||
.is_ok());
|
||||
});
|
||||
|
||||
@@ -172,7 +172,7 @@ fn main() {
|
||||
G2,
|
||||
MinRootCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(circuit_primary, circuit_secondary.clone());
|
||||
>::setup(circuit_primary.clone(), circuit_secondary.clone());
|
||||
println!("PublicParams::setup, took {:?} ", start.elapsed());
|
||||
|
||||
println!(
|
||||
@@ -218,15 +218,20 @@ fn main() {
|
||||
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
|
||||
// produce a recursive SNARK
|
||||
println!("Generating a RecursiveSNARK...");
|
||||
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
||||
let mut recursive_snark: RecursiveSNARK<G1, G2, C1, C2> = RecursiveSNARK::<G1, G2, C1, C2>::new(
|
||||
&pp,
|
||||
&minroot_circuits[0],
|
||||
&circuit_secondary,
|
||||
z0_primary.clone(),
|
||||
z0_secondary.clone(),
|
||||
);
|
||||
|
||||
for (i, circuit_primary) in minroot_circuits.iter().take(num_steps).enumerate() {
|
||||
let start = Instant::now();
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
circuit_primary,
|
||||
&circuit_secondary,
|
||||
z0_primary.clone(),
|
||||
z0_secondary.clone(),
|
||||
);
|
||||
@@ -237,16 +242,12 @@ fn main() {
|
||||
res.is_ok(),
|
||||
start.elapsed()
|
||||
);
|
||||
recursive_snark = Some(res.unwrap());
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
println!("Verifying a RecursiveSNARK...");
|
||||
let start = Instant::now();
|
||||
let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone());
|
||||
let res = recursive_snark.verify(&pp, num_steps, &z0_primary, &z0_secondary);
|
||||
println!(
|
||||
"RecursiveSNARK::verify: {:?}, took {:?}",
|
||||
res.is_ok(),
|
||||
|
||||
@@ -1067,13 +1067,13 @@ mod tests {
|
||||
{
|
||||
let a = alloc_random_point(cs.namespace(|| "a")).unwrap();
|
||||
inputize_allocted_point(&a, cs.namespace(|| "inputize a")).unwrap();
|
||||
let mut b = a.clone();
|
||||
let mut b = &mut a.clone();
|
||||
b.y = AllocatedNum::alloc(cs.namespace(|| "allocate negation of a"), || {
|
||||
Ok(G::Base::ZERO)
|
||||
})
|
||||
.unwrap();
|
||||
inputize_allocted_point(&b, cs.namespace(|| "inputize b")).unwrap();
|
||||
let e = a.add(cs.namespace(|| "add a to b"), &b).unwrap();
|
||||
inputize_allocted_point(b, cs.namespace(|| "inputize b")).unwrap();
|
||||
let e = a.add(cs.namespace(|| "add a to b"), b).unwrap();
|
||||
e
|
||||
}
|
||||
|
||||
|
||||
599
src/lib.rs
599
src/lib.rs
@@ -192,197 +192,207 @@ where
|
||||
C1: StepCircuit<G1::Scalar>,
|
||||
C2: StepCircuit<G2::Scalar>,
|
||||
{
|
||||
/// Create new instance of recursive SNARK
|
||||
pub fn new(
|
||||
pp: &PublicParams<G1, G2, C1, C2>,
|
||||
c_primary: &C1,
|
||||
c_secondary: &C2,
|
||||
z0_primary: Vec<G1::Scalar>,
|
||||
z0_secondary: Vec<G2::Scalar>,
|
||||
) -> Self {
|
||||
// Expected outputs of the two circuits
|
||||
let zi_primary = c_primary.output(&z0_primary);
|
||||
let zi_secondary = c_secondary.output(&z0_secondary);
|
||||
|
||||
// base case for the primary
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
|
||||
scalar_as_base::<G1>(pp.digest),
|
||||
G1::Scalar::ZERO,
|
||||
z0_primary,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
let (u_primary, w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
|
||||
.map_err(|_e| NovaError::UnSat)
|
||||
.expect("Nova error unsat");
|
||||
|
||||
// base case for the secondary
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
|
||||
pp.digest,
|
||||
G2::Scalar::ZERO,
|
||||
z0_secondary,
|
||||
None,
|
||||
None,
|
||||
Some(u_primary.clone()),
|
||||
None,
|
||||
);
|
||||
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
let (u_secondary, w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)
|
||||
.expect("Nova error unsat");
|
||||
|
||||
// IVC proof for the primary circuit
|
||||
let l_w_primary = w_primary;
|
||||
let l_u_primary = u_primary;
|
||||
let r_W_primary = RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
|
||||
let r_U_primary =
|
||||
RelaxedR1CSInstance::from_r1cs_instance(&pp.ck_primary, &pp.r1cs_shape_primary, &l_u_primary);
|
||||
|
||||
// IVC proof of the secondary circuit
|
||||
let l_w_secondary = w_secondary;
|
||||
let l_u_secondary = u_secondary;
|
||||
let r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
|
||||
let r_U_secondary =
|
||||
RelaxedR1CSInstance::<G2>::default(&pp.ck_secondary, &pp.r1cs_shape_secondary);
|
||||
|
||||
if zi_primary.len() != pp.F_arity_primary || zi_secondary.len() != pp.F_arity_secondary {
|
||||
panic!("Invalid step length");
|
||||
}
|
||||
|
||||
Self {
|
||||
r_W_primary,
|
||||
r_U_primary,
|
||||
r_W_secondary,
|
||||
r_U_secondary,
|
||||
l_w_secondary,
|
||||
l_u_secondary,
|
||||
i: 0,
|
||||
zi_primary,
|
||||
zi_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a new `RecursiveSNARK` (or updates the provided `RecursiveSNARK`)
|
||||
/// by executing a step of the incremental computation
|
||||
pub fn prove_step(
|
||||
&mut self,
|
||||
pp: &PublicParams<G1, G2, C1, C2>,
|
||||
recursive_snark: Option<Self>,
|
||||
c_primary: C1,
|
||||
c_secondary: C2,
|
||||
c_primary: &C1,
|
||||
c_secondary: &C2,
|
||||
z0_primary: Vec<G1::Scalar>,
|
||||
z0_secondary: Vec<G2::Scalar>,
|
||||
) -> Result<Self, NovaError> {
|
||||
) -> Result<(), NovaError> {
|
||||
if z0_primary.len() != pp.F_arity_primary || z0_secondary.len() != pp.F_arity_secondary {
|
||||
return Err(NovaError::InvalidInitialInputLength);
|
||||
}
|
||||
|
||||
match recursive_snark {
|
||||
None => {
|
||||
// base case for the primary
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
|
||||
scalar_as_base::<G1>(pp.digest),
|
||||
G1::Scalar::ZERO,
|
||||
z0_primary.clone(),
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
);
|
||||
|
||||
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
let (u_primary, w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// base case for the secondary
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
|
||||
pp.digest,
|
||||
G2::Scalar::ZERO,
|
||||
z0_secondary.clone(),
|
||||
None,
|
||||
None,
|
||||
Some(u_primary.clone()),
|
||||
None,
|
||||
);
|
||||
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
let (u_secondary, w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// IVC proof for the primary circuit
|
||||
let l_w_primary = w_primary;
|
||||
let l_u_primary = u_primary;
|
||||
let r_W_primary =
|
||||
RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
|
||||
let r_U_primary = RelaxedR1CSInstance::from_r1cs_instance(
|
||||
&pp.ck_primary,
|
||||
&pp.r1cs_shape_primary,
|
||||
&l_u_primary,
|
||||
);
|
||||
|
||||
// IVC proof of the secondary circuit
|
||||
let l_w_secondary = w_secondary;
|
||||
let l_u_secondary = u_secondary;
|
||||
let r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
|
||||
let r_U_secondary =
|
||||
RelaxedR1CSInstance::<G2>::default(&pp.ck_secondary, &pp.r1cs_shape_secondary);
|
||||
|
||||
// Outputs of the two circuits thus far
|
||||
let zi_primary = c_primary.output(&z0_primary);
|
||||
let zi_secondary = c_secondary.output(&z0_secondary);
|
||||
|
||||
if zi_primary.len() != pp.F_arity_primary || zi_secondary.len() != pp.F_arity_secondary {
|
||||
return Err(NovaError::InvalidStepOutputLength);
|
||||
}
|
||||
|
||||
Ok(Self {
|
||||
r_W_primary,
|
||||
r_U_primary,
|
||||
r_W_secondary,
|
||||
r_U_secondary,
|
||||
l_w_secondary,
|
||||
l_u_secondary,
|
||||
i: 1_usize,
|
||||
zi_primary,
|
||||
zi_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
})
|
||||
}
|
||||
Some(r_snark) => {
|
||||
// fold the secondary circuit's instance
|
||||
let (nifs_secondary, (r_U_secondary, r_W_secondary)) = NIFS::prove(
|
||||
&pp.ck_secondary,
|
||||
&pp.ro_consts_secondary,
|
||||
&scalar_as_base::<G1>(pp.digest),
|
||||
&pp.r1cs_shape_secondary,
|
||||
&r_snark.r_U_secondary,
|
||||
&r_snark.r_W_secondary,
|
||||
&r_snark.l_u_secondary,
|
||||
&r_snark.l_w_secondary,
|
||||
)?;
|
||||
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
|
||||
scalar_as_base::<G1>(pp.digest),
|
||||
G1::Scalar::from(r_snark.i as u64),
|
||||
z0_primary,
|
||||
Some(r_snark.zi_primary.clone()),
|
||||
Some(r_snark.r_U_secondary.clone()),
|
||||
Some(r_snark.l_u_secondary.clone()),
|
||||
Some(Commitment::<G2>::decompress(&nifs_secondary.comm_T)?),
|
||||
);
|
||||
|
||||
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
|
||||
let (l_u_primary, l_w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// fold the primary circuit's instance
|
||||
let (nifs_primary, (r_U_primary, r_W_primary)) = NIFS::prove(
|
||||
&pp.ck_primary,
|
||||
&pp.ro_consts_primary,
|
||||
&pp.digest,
|
||||
&pp.r1cs_shape_primary,
|
||||
&r_snark.r_U_primary,
|
||||
&r_snark.r_W_primary,
|
||||
&l_u_primary,
|
||||
&l_w_primary,
|
||||
)?;
|
||||
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
|
||||
pp.digest,
|
||||
G2::Scalar::from(r_snark.i as u64),
|
||||
z0_secondary,
|
||||
Some(r_snark.zi_secondary.clone()),
|
||||
Some(r_snark.r_U_primary.clone()),
|
||||
Some(l_u_primary),
|
||||
Some(Commitment::<G1>::decompress(&nifs_primary.comm_T)?),
|
||||
);
|
||||
|
||||
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
|
||||
let (l_u_secondary, l_w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// update the running instances and witnesses
|
||||
let zi_primary = c_primary.output(&r_snark.zi_primary);
|
||||
let zi_secondary = c_secondary.output(&r_snark.zi_secondary);
|
||||
|
||||
Ok(Self {
|
||||
r_W_primary,
|
||||
r_U_primary,
|
||||
r_W_secondary,
|
||||
r_U_secondary,
|
||||
l_w_secondary,
|
||||
l_u_secondary,
|
||||
i: r_snark.i + 1,
|
||||
zi_primary,
|
||||
zi_secondary,
|
||||
_p_c1: Default::default(),
|
||||
_p_c2: Default::default(),
|
||||
})
|
||||
}
|
||||
// Frist step was already done in the constructor
|
||||
if self.i == 0 {
|
||||
self.i = 1;
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
// fold the secondary circuit's instance
|
||||
let (nifs_secondary, (r_U_secondary, r_W_secondary)) = NIFS::prove(
|
||||
&pp.ck_secondary,
|
||||
&pp.ro_consts_secondary,
|
||||
&scalar_as_base::<G1>(pp.digest),
|
||||
&pp.r1cs_shape_secondary,
|
||||
&self.r_U_secondary,
|
||||
&self.r_W_secondary,
|
||||
&self.l_u_secondary,
|
||||
&self.l_w_secondary,
|
||||
)
|
||||
.expect("Unable to fold secondary");
|
||||
|
||||
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
|
||||
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
|
||||
scalar_as_base::<G1>(pp.digest),
|
||||
G1::Scalar::from(self.i as u64),
|
||||
z0_primary,
|
||||
Some(self.zi_primary.clone()),
|
||||
Some(self.r_U_secondary.clone()),
|
||||
Some(self.l_u_secondary.clone()),
|
||||
Some(Commitment::<G2>::decompress(&nifs_secondary.comm_T)?),
|
||||
);
|
||||
|
||||
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_primary.clone(),
|
||||
Some(inputs_primary),
|
||||
c_primary.clone(),
|
||||
pp.ro_consts_circuit_primary.clone(),
|
||||
);
|
||||
let _ = circuit_primary.synthesize(&mut cs_primary);
|
||||
|
||||
let (l_u_primary, l_w_primary) = cs_primary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
|
||||
.map_err(|_e| NovaError::UnSat)
|
||||
.expect("Nova error unsat");
|
||||
|
||||
// fold the primary circuit's instance
|
||||
let (nifs_primary, (r_U_primary, r_W_primary)) = NIFS::prove(
|
||||
&pp.ck_primary,
|
||||
&pp.ro_consts_primary,
|
||||
&pp.digest,
|
||||
&pp.r1cs_shape_primary,
|
||||
&self.r_U_primary,
|
||||
&self.r_W_primary,
|
||||
&l_u_primary,
|
||||
&l_w_primary,
|
||||
)
|
||||
.expect("Unable to fold primary");
|
||||
|
||||
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
|
||||
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
|
||||
pp.digest,
|
||||
G2::Scalar::from(self.i as u64),
|
||||
z0_secondary,
|
||||
Some(self.zi_secondary.clone()),
|
||||
Some(self.r_U_primary.clone()),
|
||||
Some(l_u_primary),
|
||||
Some(Commitment::<G1>::decompress(&nifs_primary.comm_T)?),
|
||||
);
|
||||
|
||||
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
|
||||
pp.augmented_circuit_params_secondary.clone(),
|
||||
Some(inputs_secondary),
|
||||
c_secondary.clone(),
|
||||
pp.ro_consts_circuit_secondary.clone(),
|
||||
);
|
||||
let _ = circuit_secondary.synthesize(&mut cs_secondary);
|
||||
|
||||
let (l_u_secondary, l_w_secondary) = cs_secondary
|
||||
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
|
||||
.map_err(|_e| NovaError::UnSat)?;
|
||||
|
||||
// update the running instances and witnesses
|
||||
self.zi_primary = c_primary.output(&self.zi_primary);
|
||||
self.zi_secondary = c_secondary.output(&self.zi_secondary);
|
||||
|
||||
self.l_u_secondary = l_u_secondary;
|
||||
self.l_w_secondary = l_w_secondary;
|
||||
|
||||
self.r_U_primary = r_U_primary;
|
||||
self.r_W_primary = r_W_primary;
|
||||
|
||||
self.i += 1;
|
||||
|
||||
self.r_U_secondary = r_U_secondary;
|
||||
self.r_W_secondary = r_W_secondary;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Verify the correctness of the `RecursiveSNARK`
|
||||
@@ -390,8 +400,8 @@ where
|
||||
&self,
|
||||
pp: &PublicParams<G1, G2, C1, C2>,
|
||||
num_steps: usize,
|
||||
z0_primary: Vec<G1::Scalar>,
|
||||
z0_secondary: Vec<G2::Scalar>,
|
||||
z0_primary: &[G1::Scalar],
|
||||
z0_secondary: &[G2::Scalar],
|
||||
) -> Result<(Vec<G1::Scalar>, Vec<G2::Scalar>), NovaError> {
|
||||
// number of steps cannot be zero
|
||||
if num_steps == 0 {
|
||||
@@ -419,7 +429,7 @@ where
|
||||
);
|
||||
hasher.absorb(pp.digest);
|
||||
hasher.absorb(G1::Scalar::from(num_steps as u64));
|
||||
for e in &z0_primary {
|
||||
for e in z0_primary {
|
||||
hasher.absorb(*e);
|
||||
}
|
||||
for e in &self.zi_primary {
|
||||
@@ -433,7 +443,7 @@ where
|
||||
);
|
||||
hasher2.absorb(scalar_as_base::<G1>(pp.digest));
|
||||
hasher2.absorb(G2::Scalar::from(num_steps as u64));
|
||||
for e in &z0_secondary {
|
||||
for e in z0_secondary {
|
||||
hasher2.absorb(*e);
|
||||
}
|
||||
for e in &self.zi_secondary {
|
||||
@@ -906,23 +916,30 @@ mod tests {
|
||||
let num_steps = 1;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let mut recursive_snark = RecursiveSNARK::new(
|
||||
&pp,
|
||||
None,
|
||||
test_circuit1,
|
||||
test_circuit2,
|
||||
&test_circuit1,
|
||||
&test_circuit2,
|
||||
vec![<G1 as Group>::Scalar::ZERO],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
&test_circuit1,
|
||||
&test_circuit2,
|
||||
vec![<G1 as Group>::Scalar::ZERO],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark = res.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
num_steps,
|
||||
vec![<G1 as Group>::Scalar::ZERO],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
&vec![<G1 as Group>::Scalar::ZERO][..],
|
||||
&vec![<G2 as Group>::Scalar::ZERO][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
}
|
||||
@@ -953,49 +970,45 @@ mod tests {
|
||||
let num_steps = 3;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
let mut recursive_snark = RecursiveSNARK::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::new(
|
||||
&pp,
|
||||
&circuit_primary,
|
||||
&circuit_secondary,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
for i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
&circuit_primary,
|
||||
&circuit_secondary,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark_unwrapped = res.unwrap();
|
||||
|
||||
// verify the recursive snark at each step of recursion
|
||||
let res = recursive_snark_unwrapped.verify(
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
i + 1,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
&vec![<G1 as Group>::Scalar::ONE][..],
|
||||
&vec![<G2 as Group>::Scalar::ZERO][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// set the running variable for the next iteration
|
||||
recursive_snark = Some(recursive_snark_unwrapped);
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
num_steps,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
&vec![<G1 as Group>::Scalar::ONE][..],
|
||||
&vec![<G2 as Group>::Scalar::ZERO][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
@@ -1043,37 +1056,36 @@ mod tests {
|
||||
let num_steps = 3;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
let mut recursive_snark = RecursiveSNARK::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::new(
|
||||
&pp,
|
||||
&circuit_primary,
|
||||
&circuit_secondary,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
for _i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
&circuit_primary,
|
||||
&circuit_secondary,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
recursive_snark = Some(res.unwrap());
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
num_steps,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
&vec![<G1 as Group>::Scalar::ONE][..],
|
||||
&vec![<G2 as Group>::Scalar::ZERO][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
@@ -1138,37 +1150,36 @@ mod tests {
|
||||
let num_steps = 3;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
let mut recursive_snark = RecursiveSNARK::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::new(
|
||||
&pp,
|
||||
&circuit_primary,
|
||||
&circuit_secondary,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
for _i in 0..num_steps {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
&circuit_primary,
|
||||
&circuit_secondary,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
recursive_snark = Some(res.unwrap());
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
num_steps,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
&vec![<G1 as Group>::Scalar::ONE][..],
|
||||
&vec![<G2 as Group>::Scalar::ZERO][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
@@ -1237,14 +1248,9 @@ mod tests {
|
||||
let rng = &mut rand::rngs::OsRng;
|
||||
let mut seed = F::random(rng);
|
||||
for _i in 0..num_steps + 1 {
|
||||
let mut power = seed;
|
||||
power = power.square();
|
||||
power = power.square();
|
||||
power *= seed;
|
||||
seed *= seed.clone().square().square();
|
||||
|
||||
powers.push(Self { y: power });
|
||||
|
||||
seed = power;
|
||||
powers.push(Self { y: seed });
|
||||
}
|
||||
|
||||
// reverse the powers to get roots
|
||||
@@ -1289,12 +1295,7 @@ mod tests {
|
||||
fn output(&self, z: &[F]) -> Vec<F> {
|
||||
// sanity check
|
||||
let x = z[0];
|
||||
let y_pow_5 = {
|
||||
let y = self.y;
|
||||
let y_sq = y.square();
|
||||
let y_quad = y_sq.square();
|
||||
y_quad * self.y
|
||||
};
|
||||
let y_pow_5 = self.y * self.y.clone().square().square();
|
||||
assert_eq!(x, y_pow_5);
|
||||
|
||||
// return non-deterministic advice
|
||||
@@ -1324,33 +1325,37 @@ mod tests {
|
||||
let z0_secondary = vec![<G2 as Group>::Scalar::ZERO];
|
||||
|
||||
// produce a recursive SNARK
|
||||
let mut recursive_snark: Option<
|
||||
RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>,
|
||||
> = None;
|
||||
let mut recursive_snark: RecursiveSNARK<
|
||||
G1,
|
||||
G2,
|
||||
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
> = RecursiveSNARK::<
|
||||
G1,
|
||||
G2,
|
||||
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
|
||||
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
||||
>::new(
|
||||
&pp,
|
||||
&roots[0],
|
||||
&circuit_secondary,
|
||||
z0_primary.clone(),
|
||||
z0_secondary.clone(),
|
||||
);
|
||||
|
||||
for circuit_primary in roots.iter().take(num_steps) {
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
recursive_snark,
|
||||
circuit_primary.clone(),
|
||||
circuit_secondary.clone(),
|
||||
circuit_primary,
|
||||
&circuit_secondary.clone(),
|
||||
z0_primary.clone(),
|
||||
z0_secondary.clone(),
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
recursive_snark = Some(res.unwrap());
|
||||
}
|
||||
|
||||
assert!(recursive_snark.is_some());
|
||||
let recursive_snark = recursive_snark.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone());
|
||||
let res = recursive_snark.verify(&pp, num_steps, &z0_primary, &z0_secondary);
|
||||
assert!(res.is_ok());
|
||||
|
||||
// produce the prover and verifier keys for compressed snark
|
||||
@@ -1379,34 +1384,50 @@ mod tests {
|
||||
G1: Group<Base = <G2 as Group>::Scalar>,
|
||||
G2: Group<Base = <G1 as Group>::Scalar>,
|
||||
{
|
||||
let test_circuit1 = TrivialTestCircuit::<<G1 as Group>::Scalar>::default();
|
||||
let test_circuit2 = CubicCircuit::<<G2 as Group>::Scalar>::default();
|
||||
|
||||
// produce public parameters
|
||||
let pp = PublicParams::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::setup(TrivialTestCircuit::default(), CubicCircuit::default());
|
||||
>::setup(test_circuit1.clone(), test_circuit2.clone());
|
||||
|
||||
let num_steps = 1;
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = RecursiveSNARK::prove_step(
|
||||
let mut recursive_snark = RecursiveSNARK::<
|
||||
G1,
|
||||
G2,
|
||||
TrivialTestCircuit<<G1 as Group>::Scalar>,
|
||||
CubicCircuit<<G2 as Group>::Scalar>,
|
||||
>::new(
|
||||
&pp,
|
||||
None,
|
||||
TrivialTestCircuit::default(),
|
||||
CubicCircuit::default(),
|
||||
&test_circuit1,
|
||||
&test_circuit2,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
// produce a recursive SNARK
|
||||
let res = recursive_snark.prove_step(
|
||||
&pp,
|
||||
&test_circuit1,
|
||||
&test_circuit2,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
);
|
||||
|
||||
assert!(res.is_ok());
|
||||
let recursive_snark = res.unwrap();
|
||||
|
||||
// verify the recursive SNARK
|
||||
let res = recursive_snark.verify(
|
||||
&pp,
|
||||
num_steps,
|
||||
vec![<G1 as Group>::Scalar::ONE],
|
||||
vec![<G2 as Group>::Scalar::ZERO],
|
||||
&vec![<G1 as Group>::Scalar::ONE][..],
|
||||
&vec![<G2 as Group>::Scalar::ZERO][..],
|
||||
);
|
||||
assert!(res.is_ok());
|
||||
|
||||
|
||||
@@ -69,7 +69,7 @@ impl<G: Group> Default for Commitment<G> {
|
||||
impl<G: Group> TranscriptReprTrait<G> for Commitment<G> {
|
||||
fn to_transcript_bytes(&self) -> Vec<u8> {
|
||||
let (x, y, is_infinity) = self.comm.to_coordinates();
|
||||
let is_infinity_byte = if is_infinity { 0u8 } else { 1u8 };
|
||||
let is_infinity_byte = (!is_infinity).into();
|
||||
[
|
||||
x.to_transcript_bytes(),
|
||||
y.to_transcript_bytes(),
|
||||
|
||||
Reference in New Issue
Block a user