|
|
@ -1,7 +1,9 @@ |
|
|
|
//! This module implements various elliptic curve gadgets
|
|
|
|
#![allow(non_snake_case)]
|
|
|
|
use crate::gadgets::utils::{
|
|
|
|
alloc_one, alloc_zero, conditionally_select, conditionally_select2, select_one_or, select_zero_or,
|
|
|
|
alloc_num_equals, alloc_one, alloc_zero, conditionally_select, conditionally_select2,
|
|
|
|
select_num_or_one, select_num_or_zero, select_num_or_zero2, select_one_or_diff2,
|
|
|
|
select_one_or_num2, select_zero_or_num2,
|
|
|
|
};
|
|
|
|
use bellperson::{
|
|
|
|
gadgets::{
|
|
|
@ -96,7 +98,7 @@ where |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make the point io
|
|
|
|
/// Make the point io
|
|
|
|
#[cfg(test)]
|
|
|
|
pub fn inputize<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<(), SynthesisError> {
|
|
|
|
let _ = self.x.inputize(cs.namespace(|| "Input point.x"));
|
|
|
@ -107,52 +109,113 @@ where |
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Adds other point to this point and returns the result
|
|
|
|
/// Assumes that both other.is_infinity and this.is_infinty are bits
|
|
|
|
/// Add two points (may be equal)
|
|
|
|
pub fn add<CS: ConstraintSystem<Fp>>(
|
|
|
|
&self,
|
|
|
|
mut cs: CS,
|
|
|
|
other: &AllocatedPoint<Fp>,
|
|
|
|
) -> Result<Self, SynthesisError> {
|
|
|
|
// Allocate the boolean variables that check if either of the points is infinity
|
|
|
|
// Compute boolean equal indicating if self = other
|
|
|
|
|
|
|
|
let equal_x = alloc_num_equals(
|
|
|
|
cs.namespace(|| "check self.x == other.x"),
|
|
|
|
&self.x,
|
|
|
|
&other.x,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let equal_y = alloc_num_equals(
|
|
|
|
cs.namespace(|| "check self.y == other.y"),
|
|
|
|
&self.y,
|
|
|
|
&other.y,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
// Compute the result of the addition and the result of double self
|
|
|
|
let result_from_add = self.add_internal(cs.namespace(|| "add internal"), other, &equal_x)?;
|
|
|
|
let result_from_double = self.double(cs.namespace(|| "double"))?;
|
|
|
|
|
|
|
|
// Output:
|
|
|
|
// If (self == other) {
|
|
|
|
// return double(self)
|
|
|
|
// }else {
|
|
|
|
// if (self.x == other.x){
|
|
|
|
// return infinity [negation]
|
|
|
|
// } else {
|
|
|
|
// return add(self, other)
|
|
|
|
// }
|
|
|
|
// }
|
|
|
|
let result_for_equal_x = AllocatedPoint::select_point_or_infinity(
|
|
|
|
cs.namespace(|| "equal_y ? result_from_double : infinity"),
|
|
|
|
&result_from_double,
|
|
|
|
&Boolean::from(equal_y),
|
|
|
|
)?;
|
|
|
|
|
|
|
|
AllocatedPoint::conditionally_select(
|
|
|
|
cs.namespace(|| "equal ? result_from_double : result_from_add"),
|
|
|
|
&result_for_equal_x,
|
|
|
|
&result_from_add,
|
|
|
|
&Boolean::from(equal_x),
|
|
|
|
)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Adds other point to this point and returns the result. Assumes that the two points are
|
|
|
|
/// different and that both other.is_infinity and this.is_infinty are bits
|
|
|
|
pub fn add_internal<CS: ConstraintSystem<Fp>>(
|
|
|
|
&self,
|
|
|
|
mut cs: CS,
|
|
|
|
other: &AllocatedPoint<Fp>,
|
|
|
|
equal_x: &AllocatedBit,
|
|
|
|
) -> Result<Self, SynthesisError> {
|
|
|
|
//************************************************************************/
|
|
|
|
// lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
|
|
|
|
//************************************************************************/
|
|
|
|
// First compute (other.x - self.x).inverse()
|
|
|
|
// If either self or other are 1 then compute bogus values
|
|
|
|
// If either self or other are the infinity point or self.x = other.x then compute bogus values
|
|
|
|
// Specifically,
|
|
|
|
// x_diff = self != inf && other != inf && self.x == other.x ? (other.x - self.x) : 1
|
|
|
|
|
|
|
|
// x_diff = other != inf && self != inf ? (other.x - self.x) : 1
|
|
|
|
let x_diff_actual = AllocatedNum::alloc(cs.namespace(|| "actual x diff"), || {
|
|
|
|
Ok(*other.x.get_value().get()? - *self.x.get_value().get()?)
|
|
|
|
// Compute self.is_infinity OR other.is_infinity =
|
|
|
|
// NOT(NOT(self.is_ifninity) AND NOT(other.is_infinity))
|
|
|
|
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
|
|
|
|
Ok(
|
|
|
|
Fp::one()
|
|
|
|
- (Fp::one() - *self.is_infinity.get_value().get()?)
|
|
|
|
* (Fp::one() - *other.is_infinity.get_value().get()?),
|
|
|
|
)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "actual x_diff is correct",
|
|
|
|
|lc| lc + other.x.get_variable() - self.x.get_variable(),
|
|
|
|
|lc| lc + CS::one(),
|
|
|
|
|lc| lc + x_diff_actual.get_variable(),
|
|
|
|
|| "1 - at least one inf = (1-self.is_infinity) * (1-other.is_infinity)",
|
|
|
|
|lc| lc + CS::one() - self.is_infinity.get_variable(),
|
|
|
|
|lc| lc + CS::one() - other.is_infinity.get_variable(),
|
|
|
|
|lc| lc + CS::one() - at_least_one_inf.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
// Compute self.is_infinity OR other.is_infinity
|
|
|
|
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
|
|
|
|
Ok(*self.is_infinity.get_value().get()? * *other.is_infinity.get_value().get()?)
|
|
|
|
})?;
|
|
|
|
// Now compute x_diff_is_actual = at_least_one_inf OR equal_x
|
|
|
|
let x_diff_is_actual =
|
|
|
|
AllocatedNum::alloc(cs.namespace(|| "allocate x_diff_is_actual"), || {
|
|
|
|
Ok(if *equal_x.get_value().get()? {
|
|
|
|
Fp::one()
|
|
|
|
} else {
|
|
|
|
*at_least_one_inf.get_value().get()?
|
|
|
|
})
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "at least one inf = self.is_infinity * other.is_infinity",
|
|
|
|
|lc| lc + self.is_infinity.get_variable(),
|
|
|
|
|lc| lc + other.is_infinity.get_variable(),
|
|
|
|
|lc| lc + at_least_one_inf.get_variable(),
|
|
|
|
|| "1 - x_diff_is_actual = (1-equal_x) * (1-at_least_one_inf)",
|
|
|
|
|lc| lc + CS::one() - at_least_one_inf.get_variable(),
|
|
|
|
|lc| lc + CS::one() - equal_x.get_variable(),
|
|
|
|
|lc| lc + CS::one() - x_diff_is_actual.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
// x_diff = 1 if either self.is_infinity or other.is_infinity else x_diff_actual
|
|
|
|
let x_diff = select_one_or(
|
|
|
|
// x_diff = 1 if either self.is_infinity or other.is_infinity or self.x = other.x else self.x -
|
|
|
|
// other.x
|
|
|
|
let x_diff = select_one_or_diff2(
|
|
|
|
cs.namespace(|| "Compute x_diff"),
|
|
|
|
&x_diff_actual,
|
|
|
|
&at_least_one_inf,
|
|
|
|
&other.x,
|
|
|
|
&self.x,
|
|
|
|
&x_diff_is_actual,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let x_diff_inv = AllocatedNum::alloc(cs.namespace(|| "x diff inverse"), || {
|
|
|
|
if *at_least_one_inf.get_value().get()? == Fp::one() {
|
|
|
|
if *x_diff_is_actual.get_value().get()? == Fp::one() {
|
|
|
|
// Set to default
|
|
|
|
Ok(Fp::one())
|
|
|
|
} else {
|
|
|
@ -220,55 +283,56 @@ where |
|
|
|
|lc| lc + y.get_variable() + self.y.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let is_infinity = AllocatedNum::alloc(cs.namespace(|| "is infinity"), || Ok(Fp::zero()))?;
|
|
|
|
|
|
|
|
//************************************************************************/
|
|
|
|
// We only return the computed x, y if neither of the points is infinity.
|
|
|
|
// We only return the computed x, y if neither of the points is infinity and self.x != other.y
|
|
|
|
// if self.is_infinity return other.clone()
|
|
|
|
// elif other.is_infinity return self.clone()
|
|
|
|
// elif self.x == other.x return infinity
|
|
|
|
// Otherwise return the computed points.
|
|
|
|
//************************************************************************/
|
|
|
|
// Now compute the output x
|
|
|
|
let inner_x = conditionally_select2(
|
|
|
|
cs.namespace(|| "final x: inner if"),
|
|
|
|
|
|
|
|
let x1 = conditionally_select2(
|
|
|
|
cs.namespace(|| "x1 = other.is_infinity ? self.x : x"),
|
|
|
|
&self.x,
|
|
|
|
&x,
|
|
|
|
&other.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let x = conditionally_select2(
|
|
|
|
cs.namespace(|| "final x: outer if"),
|
|
|
|
cs.namespace(|| "x = self.is_infinity ? other.x : x1"),
|
|
|
|
&other.x,
|
|
|
|
&inner_x,
|
|
|
|
&x1,
|
|
|
|
&self.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
// The output y
|
|
|
|
let inner_y = conditionally_select2(
|
|
|
|
cs.namespace(|| "final y: inner if"),
|
|
|
|
let y1 = conditionally_select2(
|
|
|
|
cs.namespace(|| "y1 = other.is_infinity ? self.y : y"),
|
|
|
|
&self.y,
|
|
|
|
&y,
|
|
|
|
&other.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let y = conditionally_select2(
|
|
|
|
cs.namespace(|| "final y: outer if"),
|
|
|
|
cs.namespace(|| "y = self.is_infinity ? other.y : y1"),
|
|
|
|
&other.y,
|
|
|
|
&inner_y,
|
|
|
|
&y1,
|
|
|
|
&self.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
// The output is_infinity
|
|
|
|
let inner_is_infinity = conditionally_select2(
|
|
|
|
cs.namespace(|| "final is infinity: inner if"),
|
|
|
|
let is_infinity1 = select_num_or_zero2(
|
|
|
|
cs.namespace(|| "is_infinity1 = other.is_infinity ? self.is_infinity : 0"),
|
|
|
|
&self.is_infinity,
|
|
|
|
&is_infinity,
|
|
|
|
&other.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let is_infinity = conditionally_select2(
|
|
|
|
cs.namespace(|| "final is infinity: outer if"),
|
|
|
|
cs.namespace(|| "is_infinity = self.is_infinity ? other.is_infinity : is_infinity1"),
|
|
|
|
&other.is_infinity,
|
|
|
|
&inner_is_infinity,
|
|
|
|
&is_infinity1,
|
|
|
|
&self.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
Ok(Self { x, y, is_infinity })
|
|
|
|
}
|
|
|
|
|
|
|
@ -292,7 +356,7 @@ where |
|
|
|
|lc| lc + tmp_actual.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let tmp = select_one_or(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
|
|
|
|
let tmp = select_one_or_num2(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
|
|
|
|
|
|
|
|
// Compute inv = tmp.invert
|
|
|
|
let tmp_inv = AllocatedNum::alloc(cs.namespace(|| "tmp inverse"), || {
|
|
|
@ -387,10 +451,10 @@ where |
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
// x
|
|
|
|
let x = select_zero_or(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
|
|
|
|
let x = select_zero_or_num2(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
|
|
|
|
|
|
|
|
// y
|
|
|
|
let y = select_zero_or(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
|
|
|
|
let y = select_zero_or_num2(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
|
|
|
|
|
|
|
|
// is_infinity
|
|
|
|
let is_infinity = self.is_infinity.clone();
|
|
|
@ -417,7 +481,6 @@ where |
|
|
|
// res = self.add(&res);
|
|
|
|
// }
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
let self_and_res = self.add(cs.namespace(|| format!("{}: add", i)), &res)?;
|
|
|
|
res = Self::conditionally_select(
|
|
|
|
cs.namespace(|| format!("{}: Update res", i)),
|
|
|
@ -449,6 +512,25 @@ where |
|
|
|
|
|
|
|
Ok(Self { x, y, is_infinity })
|
|
|
|
}
|
|
|
|
|
|
|
|
/// If condition outputs a otherwise infinity
|
|
|
|
pub fn select_point_or_infinity<CS: ConstraintSystem<Fp>>(
|
|
|
|
mut cs: CS,
|
|
|
|
a: &Self,
|
|
|
|
condition: &Boolean,
|
|
|
|
) -> Result<Self, SynthesisError> {
|
|
|
|
let x = select_num_or_zero(cs.namespace(|| "select x"), &a.x, condition)?;
|
|
|
|
|
|
|
|
let y = select_num_or_zero(cs.namespace(|| "select y"), &a.y, condition)?;
|
|
|
|
|
|
|
|
let is_infinity = select_num_or_one(
|
|
|
|
cs.namespace(|| "select is_infinity"),
|
|
|
|
&a.is_infinity,
|
|
|
|
condition,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
Ok(Self { x, y, is_infinity })
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
@ -501,7 +583,28 @@ where |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Add any two points
|
|
|
|
pub fn add(&self, other: &Point<Fp, Fq>) -> Self {
|
|
|
|
if self.x == other.x {
|
|
|
|
// If self == other then call double
|
|
|
|
if self.y == other.y {
|
|
|
|
self.double()
|
|
|
|
} else {
|
|
|
|
// if self.x == other.x and self.y != other.y then return infinity
|
|
|
|
Self {
|
|
|
|
x: Fp::zero(),
|
|
|
|
y: Fp::zero(),
|
|
|
|
is_infinity: true,
|
|
|
|
_p: Default::default(),
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
self.add_internal(other)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Add two different points
|
|
|
|
pub fn add_internal(&self, other: &Point<Fp, Fq>) -> Self {
|
|
|
|
if self.is_infinity {
|
|
|
|
return other.clone();
|
|
|
|
}
|
|
|
@ -681,4 +784,85 @@ mod tests { |
|
|
|
// Make sure that this is satisfiable
|
|
|
|
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
|
|
|
|
}
|
|
|
|
|
|
|
|
fn synthesize_add_equal<Fp, Fq, CS>(mut cs: CS) -> (AllocatedPoint<Fp>, AllocatedPoint<Fp>)
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
Fq: PrimeField + PrimeFieldBits,
|
|
|
|
CS: ConstraintSystem<Fp>,
|
|
|
|
{
|
|
|
|
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
|
|
|
|
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
|
|
|
|
let e = a.add(cs.namespace(|| "add a to a"), &a).unwrap();
|
|
|
|
let _ = e.inputize(cs.namespace(|| "inputize e")).unwrap();
|
|
|
|
(a, e)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_ecc_circuit_add_equal() {
|
|
|
|
// First create the shape
|
|
|
|
let mut cs: ShapeCS<G> = ShapeCS::new();
|
|
|
|
let _ = synthesize_add_equal::<Fp, Fq, _>(cs.namespace(|| "synthesize add equal"));
|
|
|
|
println!("Number of constraints: {}", cs.num_constraints());
|
|
|
|
let shape = cs.r1cs_shape();
|
|
|
|
let gens = cs.r1cs_gens();
|
|
|
|
|
|
|
|
// Then the satisfying assignment
|
|
|
|
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
|
|
|
|
let (a, e) = synthesize_add_equal::<Fp, Fq, _>(cs.namespace(|| "synthesize add equal"));
|
|
|
|
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
|
|
|
|
let a_p: Point<Fp, Fq> = Point::new(
|
|
|
|
a.x.get_value().unwrap(),
|
|
|
|
a.y.get_value().unwrap(),
|
|
|
|
a.is_infinity.get_value().unwrap() == Fp::one(),
|
|
|
|
);
|
|
|
|
let e_p: Point<Fp, Fq> = Point::new(
|
|
|
|
e.x.get_value().unwrap(),
|
|
|
|
e.y.get_value().unwrap(),
|
|
|
|
e.is_infinity.get_value().unwrap() == Fp::one(),
|
|
|
|
);
|
|
|
|
let e_new = a_p.add(&a_p);
|
|
|
|
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
|
|
|
|
// Make sure that it is satisfiable
|
|
|
|
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
|
|
|
|
}
|
|
|
|
|
|
|
|
fn synthesize_add_negation<Fp, Fq, CS>(mut cs: CS) -> AllocatedPoint<Fp>
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
Fq: PrimeField + PrimeFieldBits,
|
|
|
|
CS: ConstraintSystem<Fp>,
|
|
|
|
{
|
|
|
|
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
|
|
|
|
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
|
|
|
|
let mut b = a.clone();
|
|
|
|
b.y =
|
|
|
|
AllocatedNum::alloc(cs.namespace(|| "allocate negation of a"), || Ok(Fp::zero())).unwrap();
|
|
|
|
let _ = b.inputize(cs.namespace(|| "inputize b")).unwrap();
|
|
|
|
let e = a.add(cs.namespace(|| "add a to b"), &b).unwrap();
|
|
|
|
e
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_ecc_circuit_add_negation() {
|
|
|
|
// First create the shape
|
|
|
|
let mut cs: ShapeCS<G> = ShapeCS::new();
|
|
|
|
let _ = synthesize_add_negation::<Fp, Fq, _>(cs.namespace(|| "synthesize add equal"));
|
|
|
|
println!("Number of constraints: {}", cs.num_constraints());
|
|
|
|
let shape = cs.r1cs_shape();
|
|
|
|
let gens = cs.r1cs_gens();
|
|
|
|
|
|
|
|
// Then the satisfying assignment
|
|
|
|
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
|
|
|
|
let e = synthesize_add_negation::<Fp, Fq, _>(cs.namespace(|| "synthesize add negation"));
|
|
|
|
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
|
|
|
|
let e_p: Point<Fp, Fq> = Point::new(
|
|
|
|
e.x.get_value().unwrap(),
|
|
|
|
e.y.get_value().unwrap(),
|
|
|
|
e.is_infinity.get_value().unwrap() == Fp::one(),
|
|
|
|
);
|
|
|
|
assert!(e_p.is_infinity);
|
|
|
|
// Make sure that it is satisfiable
|
|
|
|
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
|
|
|
|
}
|
|
|
|
}
|