Browse Source

Complete addition: handle addition of equal numbers and addition of negation (#78)

* make addition complete. test addition corner cases. optimizations

* optimization and comment

* fix errors

* all tests pass
main
iontzialla 2 years ago
committed by GitHub
parent
commit
bf35556b90
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 343 additions and 114 deletions
  1. +232
    -48
      src/gadgets/ecc.rs
  2. +111
    -66
      src/gadgets/utils.rs

+ 232
- 48
src/gadgets/ecc.rs

@ -1,7 +1,9 @@
//! This module implements various elliptic curve gadgets
#![allow(non_snake_case)]
use crate::gadgets::utils::{
alloc_one, alloc_zero, conditionally_select, conditionally_select2, select_one_or, select_zero_or,
alloc_num_equals, alloc_one, alloc_zero, conditionally_select, conditionally_select2,
select_num_or_one, select_num_or_zero, select_num_or_zero2, select_one_or_diff2,
select_one_or_num2, select_zero_or_num2,
};
use bellperson::{
gadgets::{
@ -96,7 +98,7 @@ where
}
}
// Make the point io
/// Make the point io
#[cfg(test)]
pub fn inputize<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<(), SynthesisError> {
let _ = self.x.inputize(cs.namespace(|| "Input point.x"));
@ -107,52 +109,113 @@ where
Ok(())
}
/// Adds other point to this point and returns the result
/// Assumes that both other.is_infinity and this.is_infinty are bits
/// Add two points (may be equal)
pub fn add<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
other: &AllocatedPoint<Fp>,
) -> Result<Self, SynthesisError> {
// Allocate the boolean variables that check if either of the points is infinity
// Compute boolean equal indicating if self = other
let equal_x = alloc_num_equals(
cs.namespace(|| "check self.x == other.x"),
&self.x,
&other.x,
)?;
let equal_y = alloc_num_equals(
cs.namespace(|| "check self.y == other.y"),
&self.y,
&other.y,
)?;
// Compute the result of the addition and the result of double self
let result_from_add = self.add_internal(cs.namespace(|| "add internal"), other, &equal_x)?;
let result_from_double = self.double(cs.namespace(|| "double"))?;
// Output:
// If (self == other) {
// return double(self)
// }else {
// if (self.x == other.x){
// return infinity [negation]
// } else {
// return add(self, other)
// }
// }
let result_for_equal_x = AllocatedPoint::select_point_or_infinity(
cs.namespace(|| "equal_y ? result_from_double : infinity"),
&result_from_double,
&Boolean::from(equal_y),
)?;
AllocatedPoint::conditionally_select(
cs.namespace(|| "equal ? result_from_double : result_from_add"),
&result_for_equal_x,
&result_from_add,
&Boolean::from(equal_x),
)
}
/// Adds other point to this point and returns the result. Assumes that the two points are
/// different and that both other.is_infinity and this.is_infinty are bits
pub fn add_internal<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
other: &AllocatedPoint<Fp>,
equal_x: &AllocatedBit,
) -> Result<Self, SynthesisError> {
//************************************************************************/
// lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
//************************************************************************/
// First compute (other.x - self.x).inverse()
// If either self or other are 1 then compute bogus values
// If either self or other are the infinity point or self.x = other.x then compute bogus values
// Specifically,
// x_diff = self != inf && other != inf && self.x == other.x ? (other.x - self.x) : 1
// x_diff = other != inf && self != inf ? (other.x - self.x) : 1
let x_diff_actual = AllocatedNum::alloc(cs.namespace(|| "actual x diff"), || {
Ok(*other.x.get_value().get()? - *self.x.get_value().get()?)
// Compute self.is_infinity OR other.is_infinity =
// NOT(NOT(self.is_ifninity) AND NOT(other.is_infinity))
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
Ok(
Fp::one()
- (Fp::one() - *self.is_infinity.get_value().get()?)
* (Fp::one() - *other.is_infinity.get_value().get()?),
)
})?;
cs.enforce(
|| "actual x_diff is correct",
|lc| lc + other.x.get_variable() - self.x.get_variable(),
|lc| lc + CS::one(),
|lc| lc + x_diff_actual.get_variable(),
|| "1 - at least one inf = (1-self.is_infinity) * (1-other.is_infinity)",
|lc| lc + CS::one() - self.is_infinity.get_variable(),
|lc| lc + CS::one() - other.is_infinity.get_variable(),
|lc| lc + CS::one() - at_least_one_inf.get_variable(),
);
// Compute self.is_infinity OR other.is_infinity
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
Ok(*self.is_infinity.get_value().get()? * *other.is_infinity.get_value().get()?)
})?;
// Now compute x_diff_is_actual = at_least_one_inf OR equal_x
let x_diff_is_actual =
AllocatedNum::alloc(cs.namespace(|| "allocate x_diff_is_actual"), || {
Ok(if *equal_x.get_value().get()? {
Fp::one()
} else {
*at_least_one_inf.get_value().get()?
})
})?;
cs.enforce(
|| "at least one inf = self.is_infinity * other.is_infinity",
|lc| lc + self.is_infinity.get_variable(),
|lc| lc + other.is_infinity.get_variable(),
|lc| lc + at_least_one_inf.get_variable(),
|| "1 - x_diff_is_actual = (1-equal_x) * (1-at_least_one_inf)",
|lc| lc + CS::one() - at_least_one_inf.get_variable(),
|lc| lc + CS::one() - equal_x.get_variable(),
|lc| lc + CS::one() - x_diff_is_actual.get_variable(),
);
// x_diff = 1 if either self.is_infinity or other.is_infinity else x_diff_actual
let x_diff = select_one_or(
// x_diff = 1 if either self.is_infinity or other.is_infinity or self.x = other.x else self.x -
// other.x
let x_diff = select_one_or_diff2(
cs.namespace(|| "Compute x_diff"),
&x_diff_actual,
&at_least_one_inf,
&other.x,
&self.x,
&x_diff_is_actual,
)?;
let x_diff_inv = AllocatedNum::alloc(cs.namespace(|| "x diff inverse"), || {
if *at_least_one_inf.get_value().get()? == Fp::one() {
if *x_diff_is_actual.get_value().get()? == Fp::one() {
// Set to default
Ok(Fp::one())
} else {
@ -220,55 +283,56 @@ where
|lc| lc + y.get_variable() + self.y.get_variable(),
);
let is_infinity = AllocatedNum::alloc(cs.namespace(|| "is infinity"), || Ok(Fp::zero()))?;
//************************************************************************/
// We only return the computed x, y if neither of the points is infinity.
// We only return the computed x, y if neither of the points is infinity and self.x != other.y
// if self.is_infinity return other.clone()
// elif other.is_infinity return self.clone()
// elif self.x == other.x return infinity
// Otherwise return the computed points.
//************************************************************************/
// Now compute the output x
let inner_x = conditionally_select2(
cs.namespace(|| "final x: inner if"),
let x1 = conditionally_select2(
cs.namespace(|| "x1 = other.is_infinity ? self.x : x"),
&self.x,
&x,
&other.is_infinity,
)?;
let x = conditionally_select2(
cs.namespace(|| "final x: outer if"),
cs.namespace(|| "x = self.is_infinity ? other.x : x1"),
&other.x,
&inner_x,
&x1,
&self.is_infinity,
)?;
// The output y
let inner_y = conditionally_select2(
cs.namespace(|| "final y: inner if"),
let y1 = conditionally_select2(
cs.namespace(|| "y1 = other.is_infinity ? self.y : y"),
&self.y,
&y,
&other.is_infinity,
)?;
let y = conditionally_select2(
cs.namespace(|| "final y: outer if"),
cs.namespace(|| "y = self.is_infinity ? other.y : y1"),
&other.y,
&inner_y,
&y1,
&self.is_infinity,
)?;
// The output is_infinity
let inner_is_infinity = conditionally_select2(
cs.namespace(|| "final is infinity: inner if"),
let is_infinity1 = select_num_or_zero2(
cs.namespace(|| "is_infinity1 = other.is_infinity ? self.is_infinity : 0"),
&self.is_infinity,
&is_infinity,
&other.is_infinity,
)?;
let is_infinity = conditionally_select2(
cs.namespace(|| "final is infinity: outer if"),
cs.namespace(|| "is_infinity = self.is_infinity ? other.is_infinity : is_infinity1"),
&other.is_infinity,
&inner_is_infinity,
&is_infinity1,
&self.is_infinity,
)?;
Ok(Self { x, y, is_infinity })
}
@ -292,7 +356,7 @@ where
|lc| lc + tmp_actual.get_variable(),
);
let tmp = select_one_or(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
let tmp = select_one_or_num2(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
// Compute inv = tmp.invert
let tmp_inv = AllocatedNum::alloc(cs.namespace(|| "tmp inverse"), || {
@ -387,10 +451,10 @@ where
/*************************************************************/
// x
let x = select_zero_or(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
let x = select_zero_or_num2(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
// y
let y = select_zero_or(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
let y = select_zero_or_num2(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
// is_infinity
let is_infinity = self.is_infinity.clone();
@ -417,7 +481,6 @@ where
// res = self.add(&res);
// }
/*************************************************************/
let self_and_res = self.add(cs.namespace(|| format!("{}: add", i)), &res)?;
res = Self::conditionally_select(
cs.namespace(|| format!("{}: Update res", i)),
@ -449,6 +512,25 @@ where
Ok(Self { x, y, is_infinity })
}
/// If condition outputs a otherwise infinity
pub fn select_point_or_infinity<CS: ConstraintSystem<Fp>>(
mut cs: CS,
a: &Self,
condition: &Boolean,
) -> Result<Self, SynthesisError> {
let x = select_num_or_zero(cs.namespace(|| "select x"), &a.x, condition)?;
let y = select_num_or_zero(cs.namespace(|| "select y"), &a.y, condition)?;
let is_infinity = select_num_or_one(
cs.namespace(|| "select is_infinity"),
&a.is_infinity,
condition,
)?;
Ok(Self { x, y, is_infinity })
}
}
#[cfg(test)]
@ -501,7 +583,28 @@ where
}
}
/// Add any two points
pub fn add(&self, other: &Point<Fp, Fq>) -> Self {
if self.x == other.x {
// If self == other then call double
if self.y == other.y {
self.double()
} else {
// if self.x == other.x and self.y != other.y then return infinity
Self {
x: Fp::zero(),
y: Fp::zero(),
is_infinity: true,
_p: Default::default(),
}
}
} else {
self.add_internal(other)
}
}
/// Add two different points
pub fn add_internal(&self, other: &Point<Fp, Fq>) -> Self {
if self.is_infinity {
return other.clone();
}
@ -681,4 +784,85 @@ mod tests {
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
fn synthesize_add_equal<Fp, Fq, CS>(mut cs: CS) -> (AllocatedPoint<Fp>, AllocatedPoint<Fp>)
where
Fp: PrimeField,
Fq: PrimeField + PrimeFieldBits,
CS: ConstraintSystem<Fp>,
{
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
let e = a.add(cs.namespace(|| "add a to a"), &a).unwrap();
let _ = e.inputize(cs.namespace(|| "inputize e")).unwrap();
(a, e)
}
#[test]
fn test_ecc_circuit_add_equal() {
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_add_equal::<Fp, Fq, _>(cs.namespace(|| "synthesize add equal"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let (a, e) = synthesize_add_equal::<Fp, Fq, _>(cs.namespace(|| "synthesize add equal"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
let a_p: Point<Fp, Fq> = Point::new(
a.x.get_value().unwrap(),
a.y.get_value().unwrap(),
a.is_infinity.get_value().unwrap() == Fp::one(),
);
let e_p: Point<Fp, Fq> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == Fp::one(),
);
let e_new = a_p.add(&a_p);
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
// Make sure that it is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
fn synthesize_add_negation<Fp, Fq, CS>(mut cs: CS) -> AllocatedPoint<Fp>
where
Fp: PrimeField,
Fq: PrimeField + PrimeFieldBits,
CS: ConstraintSystem<Fp>,
{
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
let mut b = a.clone();
b.y =
AllocatedNum::alloc(cs.namespace(|| "allocate negation of a"), || Ok(Fp::zero())).unwrap();
let _ = b.inputize(cs.namespace(|| "inputize b")).unwrap();
let e = a.add(cs.namespace(|| "add a to b"), &b).unwrap();
e
}
#[test]
fn test_ecc_circuit_add_negation() {
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_add_negation::<Fp, Fq, _>(cs.namespace(|| "synthesize add equal"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let e = synthesize_add_negation::<Fp, Fq, _>(cs.namespace(|| "synthesize add negation"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
let e_p: Point<Fp, Fq> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == Fp::one(),
);
assert!(e_p.is_infinity);
// Make sure that it is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
}

+ 111
- 66
src/gadgets/utils.rs

@ -155,80 +155,29 @@ pub fn alloc_num_equals>(
let r = AllocatedBit::alloc(cs.namespace(|| "r"), r_value)?;
let delta = AllocatedNum::alloc(cs.namespace(|| "delta"), || {
let a_value = *a.get_value().get()?;
let b_value = *b.get_value().get()?;
// Allocate t s.t. t=1 if z1 == z2 else 1/(z1 - z2)
let mut delta = a_value;
delta.sub_assign(&b_value);
Ok(delta)
})?;
cs.enforce(
|| "delta = (a - b)",
|lc| lc + a.get_variable() - b.get_variable(),
|lc| lc + CS::one(),
|lc| lc + delta.get_variable(),
);
let delta_inv = AllocatedNum::alloc(cs.namespace(|| "delta_inv"), || {
let delta = *delta.get_value().get()?;
if delta.is_zero().unwrap_u8() == 1 {
Ok(F::one()) // we can return any number here, it doesn't matter
} else {
Ok(delta.invert().unwrap())
}
})?;
// Allocate `t = delta * delta_inv`
// If `delta` is non-zero (a != b), `t` will equal 1
// If `delta` is zero (a == b), `t` cannot equal 1
let t = AllocatedNum::alloc(cs.namespace(|| "t"), || {
let mut tmp = *delta.get_value().get()?;
tmp.mul_assign(&(*delta_inv.get_value().get()?));
Ok(tmp)
Ok(if *a.get_value().get()? == *b.get_value().get()? {
F::one()
} else {
(*a.get_value().get()? - *b.get_value().get()?)
.invert()
.unwrap()
})
})?;
// Constrain allocation:
// t = (a - b) * delta_inv
cs.enforce(
|| "t = (a - b) * delta_inv",
|lc| lc + a.get_variable() - b.get_variable(),
|lc| lc + delta_inv.get_variable(),
|| "t*(a - b) = 1 - r",
|lc| lc + t.get_variable(),
);
// Constrain:
// (a - b) * (t - 1) == 0
// This enforces that correct `delta_inv` was provided,
// and thus `t` is 1 if `(a - b)` is non zero (a != b )
cs.enforce(
|| "(a - b) * (t - 1) == 0",
|lc| lc + a.get_variable() - b.get_variable(),
|lc| lc + t.get_variable() - CS::one(),
|lc| lc,
|lc| lc + CS::one() - r.get_variable(),
);
// Constrain:
// (a - b) * r == 0
// This enforces that `r` is zero if `(a - b)` is non-zero (a != b)
cs.enforce(
|| "(a - b) * r == 0",
|lc| lc + a.get_variable() - b.get_variable(),
|| "r*(a - b) = 0",
|lc| lc + r.get_variable(),
|lc| lc,
);
// Constrain:
// (t - 1) * (r - 1) == 0
// This enforces that `r` is one if `t` is not one (a == b)
cs.enforce(
|| "(t - 1) * (r - 1) == 0",
|lc| lc + t.get_variable() - CS::one(),
|lc| lc + r.get_variable() - CS::one(),
|lc| lc + a.get_variable() - b.get_variable(),
|lc| lc,
);
@ -324,8 +273,8 @@ pub fn conditionally_select2>(
Ok(c)
}
/// If condition set to 0 otherwise a
pub fn select_zero_or<F: PrimeField, CS: ConstraintSystem<F>>(
/// If condition set to 0 otherwise a. Condition is an allocated num
pub fn select_zero_or_num2<F: PrimeField, CS: ConstraintSystem<F>>(
mut cs: CS,
a: &AllocatedNum<F>,
condition: &AllocatedNum<F>,
@ -349,8 +298,56 @@ pub fn select_zero_or>(
Ok(c)
}
/// If condition set to a otherwise 0. Condition is an allocated num
pub fn select_num_or_zero2<F: PrimeField, CS: ConstraintSystem<F>>(
mut cs: CS,
a: &AllocatedNum<F>,
condition: &AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
let c = AllocatedNum::alloc(cs.namespace(|| "conditional select result"), || {
if *condition.get_value().get()? == F::one() {
Ok(*a.get_value().get()?)
} else {
Ok(F::zero())
}
})?;
cs.enforce(
|| "conditional select constraint",
|lc| lc + a.get_variable(),
|lc| lc + condition.get_variable(),
|lc| lc + c.get_variable(),
);
Ok(c)
}
/// If condition set to a otherwise 0
pub fn select_num_or_zero<F: PrimeField, CS: ConstraintSystem<F>>(
mut cs: CS,
a: &AllocatedNum<F>,
condition: &Boolean,
) -> Result<AllocatedNum<F>, SynthesisError> {
let c = AllocatedNum::alloc(cs.namespace(|| "conditional select result"), || {
if *condition.get_value().get()? {
Ok(*a.get_value().get()?)
} else {
Ok(F::zero())
}
})?;
cs.enforce(
|| "conditional select constraint",
|lc| lc + a.get_variable(),
|_| condition.lc(CS::one(), F::one()),
|lc| lc + c.get_variable(),
);
Ok(c)
}
/// If condition set to 1 otherwise a
pub fn select_one_or<F: PrimeField, CS: ConstraintSystem<F>>(
pub fn select_one_or_num2<F: PrimeField, CS: ConstraintSystem<F>>(
mut cs: CS,
a: &AllocatedNum<F>,
condition: &AllocatedNum<F>,
@ -371,3 +368,51 @@ pub fn select_one_or>(
);
Ok(c)
}
/// If condition set to 1 otherwise a - b
pub fn select_one_or_diff2<F: PrimeField, CS: ConstraintSystem<F>>(
mut cs: CS,
a: &AllocatedNum<F>,
b: &AllocatedNum<F>,
condition: &AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
let c = AllocatedNum::alloc(cs.namespace(|| "conditional select result"), || {
if *condition.get_value().get()? == F::one() {
Ok(F::one())
} else {
Ok(*a.get_value().get()? - *b.get_value().get()?)
}
})?;
cs.enforce(
|| "conditional select constraint",
|lc| lc + CS::one() - a.get_variable() + b.get_variable(),
|lc| lc + condition.get_variable(),
|lc| lc + c.get_variable() - a.get_variable() + b.get_variable(),
);
Ok(c)
}
/// If condition set to a otherwise 1 for boolean conditions
pub fn select_num_or_one<F: PrimeField, CS: ConstraintSystem<F>>(
mut cs: CS,
a: &AllocatedNum<F>,
condition: &Boolean,
) -> Result<AllocatedNum<F>, SynthesisError> {
let c = AllocatedNum::alloc(cs.namespace(|| "conditional select result"), || {
if *condition.get_value().get()? {
Ok(*a.get_value().get()?)
} else {
Ok(F::one())
}
})?;
cs.enforce(
|| "conditional select constraint",
|lc| lc + a.get_variable() - CS::one(),
|_| condition.lc(CS::one(), F::one()),
|lc| lc + c.get_variable() - CS::one(),
);
Ok(c)
}

Loading…
Cancel
Save