Browse Source

cleanup: merge ecc and ecc_circuit (#25)

main
Srinath Setty 2 years ago
committed by GitHub
parent
commit
cbc3fe81dc
No known key found for this signature in database GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 503 additions and 591 deletions
  1. +0
    -1
      rustfmt.toml
  2. +1
    -1
      src/circuit.rs
  3. +501
    -35
      src/gadgets/ecc.rs
  4. +0
    -552
      src/gadgets/ecc_circuit.rs
  5. +1
    -2
      src/gadgets/mod.rs

+ 0
- 1
rustfmt.toml

@ -1,5 +1,4 @@
edition = "2018"
tab_spaces = 2
newline_style = "Unix"
report_fixme = "Always"
use_try_shorthand = true

+ 1
- 1
src/circuit.rs

@ -12,7 +12,7 @@
use super::commitments::Commitment;
use super::gadgets::{
ecc_circuit::AllocatedPoint,
ecc::AllocatedPoint,
utils::{
alloc_bignat_constant, alloc_num_equals, alloc_one, alloc_zero, conditionally_select,
conditionally_select_bignat, le_bits_to_num,

+ 501
- 35
src/gadgets/ecc.rs

@ -1,26 +1,457 @@
#![allow(non_snake_case)]
use ff::{PrimeField, PrimeFieldBits};
use crate::gadgets::utils::{
alloc_one, alloc_zero, conditionally_select, conditionally_select2, select_one_or, select_zero_or,
};
use bellperson::{
gadgets::{
boolean::{AllocatedBit, Boolean},
num::AllocatedNum,
Assignment,
},
ConstraintSystem, SynthesisError,
};
use ff::PrimeField;
#[derive(Clone)]
pub struct AllocatedPoint<Fp>
where
Fp: PrimeField,
{
pub(crate) x: AllocatedNum<Fp>,
pub(crate) y: AllocatedNum<Fp>,
pub(crate) is_infinity: AllocatedNum<Fp>,
}
impl<Fp> AllocatedPoint<Fp>
where
Fp: PrimeField,
{
// Creates a new allocated point from allocated nums.
pub fn new(x: AllocatedNum<Fp>, y: AllocatedNum<Fp>, is_infinity: AllocatedNum<Fp>) -> Self {
Self { x, y, is_infinity }
}
// Check that is infinity is 0/1
pub fn check_is_infinity<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
) -> Result<(), SynthesisError> {
// Check that is_infinity * ( 1 - is_infinity ) = 0
cs.enforce(
|| "is_infinity is bit",
|lc| lc + self.is_infinity.get_variable(),
|lc| lc + CS::one() - self.is_infinity.get_variable(),
|lc| lc,
);
Ok(())
}
// Allocate a random point. Only used for testing
#[cfg(test)]
pub fn random_vartime<CS: ConstraintSystem<Fp>>(mut cs: CS) -> Result<Self, SynthesisError> {
loop {
let x = Fp::random(&mut OsRng);
let y = (x * x * x + Fp::one() + Fp::one() + Fp::one() + Fp::one() + Fp::one()).sqrt();
if y.is_some().unwrap_u8() == 1 {
let x_alloc = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x))?;
let y_alloc = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y.unwrap()))?;
let is_infinity = alloc_zero(cs.namespace(|| "Is Infinity"))?;
return Ok(Self::new(x_alloc, y_alloc, is_infinity));
}
}
}
// Make the point io
#[cfg(test)]
pub fn inputize<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<(), SynthesisError> {
let _ = self.x.inputize(cs.namespace(|| "Input point.x"));
let _ = self.y.inputize(cs.namespace(|| "Input point.y"));
let _ = self
.is_infinity
.inputize(cs.namespace(|| "Input point.is_infinity"));
Ok(())
}
// Adds other point to this point and returns the result
// Assumes that both other.is_infinity and this.is_infinty are bits
pub fn add<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
other: &AllocatedPoint<Fp>,
) -> Result<Self, SynthesisError> {
// Allocate the boolean variables that check if either of the points is infinity
//************************************************************************/
// lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
//************************************************************************/
// First compute (other.x - self.x).inverse()
// If either self or other are 1 then compute bogus values
// x_diff = other != inf && self != inf ? (other.x - self.x) : 1
let x_diff_actual = AllocatedNum::alloc(cs.namespace(|| "actual x diff"), || {
Ok(*other.x.get_value().get()? - *self.x.get_value().get()?)
})?;
cs.enforce(
|| "actual x_diff is correct",
|lc| lc + other.x.get_variable() - self.x.get_variable(),
|lc| lc + CS::one(),
|lc| lc + x_diff_actual.get_variable(),
);
// Compute self.is_infinity OR other.is_infinity
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
Ok(*self.is_infinity.get_value().get()? * *other.is_infinity.get_value().get()?)
})?;
cs.enforce(
|| "at least one inf = self.is_infinity * other.is_infinity",
|lc| lc + self.is_infinity.get_variable(),
|lc| lc + other.is_infinity.get_variable(),
|lc| lc + at_least_one_inf.get_variable(),
);
// x_diff = 1 if either self.is_infinity or other.is_infinity else x_diff_actual
let x_diff = select_one_or(
cs.namespace(|| "Compute x_diff"),
&x_diff_actual,
&at_least_one_inf,
)?;
let x_diff_inv = AllocatedNum::alloc(cs.namespace(|| "x diff inverse"), || {
if *at_least_one_inf.get_value().get()? == Fp::one() {
// Set to default
Ok(Fp::one())
} else {
// Set to the actual inverse
let inv = (*other.x.get_value().get()? - *self.x.get_value().get()?).invert();
if inv.is_some().unwrap_u8() == 1 {
Ok(inv.unwrap())
} else {
Err(SynthesisError::DivisionByZero)
}
}
})?;
cs.enforce(
|| "Check inverse",
|lc| lc + x_diff.get_variable(),
|lc| lc + x_diff_inv.get_variable(),
|lc| lc + CS::one(),
);
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
Ok(
(*other.y.get_value().get()? - *self.y.get_value().get()?)
* x_diff_inv.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that lambda is correct",
|lc| lc + other.y.get_variable() - self.y.get_variable(),
|lc| lc + x_diff_inv.get_variable(),
|lc| lc + lambda.get_variable(),
);
//************************************************************************/
// x = lambda * lambda - self.x - other.x;
//************************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
*lambda.get_value().get()? * lambda.get_value().get()?
- *self.x.get_value().get()?
- *other.x.get_value().get()?,
)
})?;
cs.enforce(
|| "check that x is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + other.x.get_variable(),
);
//************************************************************************/
// y = lambda * (self.x - x) - self.y;
//************************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
*lambda.get_value().get()? * (*self.x.get_value().get()? - *x.get_value().get()?)
- *self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that y is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
let is_infinity = AllocatedNum::alloc(cs.namespace(|| "is infinity"), || Ok(Fp::zero()))?;
//************************************************************************/
// We only return the computed x, y if neither of the points is infinity.
// if self.is_infinity return other.clone()
// elif other.is_infinity return self.clone()
// Otherwise return the computed points.
//************************************************************************/
// Now compute the output x
let inner_x = conditionally_select2(
cs.namespace(|| "final x: inner if"),
&self.x,
&x,
&other.is_infinity,
)?;
let final_x = conditionally_select2(
cs.namespace(|| "final x: outer if"),
&other.x,
&inner_x,
&self.is_infinity,
)?;
// The output y
let inner_y = conditionally_select2(
cs.namespace(|| "final y: inner if"),
&self.y,
&y,
&other.is_infinity,
)?;
let final_y = conditionally_select2(
cs.namespace(|| "final y: outer if"),
&other.y,
&inner_y,
&self.is_infinity,
)?;
// The output is_infinity
let inner_is_infinity = conditionally_select2(
cs.namespace(|| "final is infinity: inner if"),
&self.is_infinity,
&is_infinity,
&other.is_infinity,
)?;
let final_is_infinity = conditionally_select2(
cs.namespace(|| "final is infinity: outer if"),
&other.is_infinity,
&inner_is_infinity,
&self.is_infinity,
)?;
Ok(Self::new(final_x, final_y, final_is_infinity))
}
pub fn double<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<Self, SynthesisError> {
//*************************************************************/
// lambda = (Fp::one() + Fp::one() + Fp::one())
// * self.x
// * self.x
// * ((Fp::one() + Fp::one()) * self.y).invert().unwrap();
/*************************************************************/
// Compute tmp = (Fp::one() + Fp::one())* self.y ? self != inf : 1
let tmp_actual = AllocatedNum::alloc(cs.namespace(|| "tmp_actual"), || {
Ok(*self.y.get_value().get()? + *self.y.get_value().get()?)
})?;
cs.enforce(
|| "check tmp_actual",
|lc| lc + CS::one() + CS::one(),
|lc| lc + self.y.get_variable(),
|lc| lc + tmp_actual.get_variable(),
);
let tmp = select_one_or(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
// Compute inv = tmp.invert
let tmp_inv = AllocatedNum::alloc(cs.namespace(|| "tmp inverse"), || {
if *self.is_infinity.get_value().get()? == Fp::one() {
// Return default value 1
Ok(Fp::one())
} else {
// Return the actual inverse
let inv = (*tmp.get_value().get()?).invert();
if inv.is_some().unwrap_u8() == 1 {
Ok(inv.unwrap())
} else {
Err(SynthesisError::DivisionByZero)
}
}
})?;
cs.enforce(
|| "Check inverse",
|lc| lc + tmp.get_variable(),
|lc| lc + tmp_inv.get_variable(),
|lc| lc + CS::one(),
);
// Now compute lambda as (Fp::one() + Fp::one + Fp::one()) * self.x * self.x * tmp_inv
let prod_1 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 1"), || {
Ok(*tmp_inv.get_value().get()? * self.x.get_value().get()?)
})?;
cs.enforce(
|| "Check prod 1",
|lc| lc + self.x.get_variable(),
|lc| lc + tmp_inv.get_variable(),
|lc| lc + prod_1.get_variable(),
);
let prod_2 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 2"), || {
Ok(*prod_1.get_value().get()? * self.x.get_value().get()?)
})?;
cs.enforce(
|| "Check prod 2",
|lc| lc + self.x.get_variable(),
|lc| lc + prod_1.get_variable(),
|lc| lc + prod_2.get_variable(),
);
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
Ok(*prod_2.get_value().get()? * (Fp::one() + Fp::one() + Fp::one()))
})?;
cs.enforce(
|| "Check lambda",
|lc| lc + CS::one() + CS::one() + CS::one(),
|lc| lc + prod_2.get_variable(),
|lc| lc + lambda.get_variable(),
);
/*************************************************************/
// x = lambda * lambda - self.x - self.x;
/*************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
((*lambda.get_value().get()?) * (*lambda.get_value().get()?))
- *self.x.get_value().get()?
- self.x.get_value().get()?,
)
})?;
cs.enforce(
|| "Check x",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + self.x.get_variable(),
);
/*************************************************************/
// y = lambda * (self.x - x) - self.y;
/*************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
(*lambda.get_value().get()?) * (*self.x.get_value().get()? - x.get_value().get()?)
- self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check y",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
/*************************************************************/
// Only return the computed x and y if the point is not infinity
/*************************************************************/
// x
let final_x = select_zero_or(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
// y
let final_y = select_zero_or(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
// is_infinity
let final_is_infinity = self.is_infinity.clone();
Ok(Self::new(final_x, final_y, final_is_infinity))
}
pub fn scalar_mul<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
scalar: Vec<AllocatedBit>,
) -> Result<Self, SynthesisError> {
/*************************************************************/
// Initialize res = Self {
// x: Fp::zero(),
// y: Fp::zero(),
// is_infinity: true,
// _p: Default::default(),
//};
/*************************************************************/
let zero = alloc_zero(cs.namespace(|| "Allocate zero"))?;
let one = alloc_one(cs.namespace(|| "Allocate one"))?;
let mut res = Self::new(zero.clone(), zero, one);
for i in (0..scalar.len()).rev() {
/*************************************************************/
// res = res.double();
/*************************************************************/
res = res.double(cs.namespace(|| format!("{}: double", i)))?;
/*************************************************************/
// if scalar[i] {
// res = self.add(&res);
// }
/*************************************************************/
let self_and_res = self.add(cs.namespace(|| format!("{}: add", i)), &res)?;
res = Self::conditionally_select(
cs.namespace(|| format!("{}: Update res", i)),
&self_and_res,
&res,
&Boolean::from(scalar[i].clone()),
)?;
}
Ok(res)
}
/// If condition outputs a otherwise outputs b
pub fn conditionally_select<CS: ConstraintSystem<Fp>>(
mut cs: CS,
a: &Self,
b: &Self,
condition: &Boolean,
) -> Result<Self, SynthesisError> {
let x = conditionally_select(cs.namespace(|| "select x"), &a.x, &b.x, condition)?;
let y = conditionally_select(cs.namespace(|| "select y"), &a.y, &b.y, condition)?;
let is_infinity = conditionally_select(
cs.namespace(|| "select is_infinity"),
&a.is_infinity,
&b.is_infinity,
condition,
)?;
Ok(Self::new(x, y, is_infinity))
}
}
#[cfg(test)]
use ff::PrimeFieldBits;
#[cfg(test)]
use rand::rngs::OsRng;
#[cfg(test)]
use std::marker::PhantomData;
#[cfg(test)]
#[derive(Debug, Clone)]
pub struct Point<Fp, Fq>
where
Fp: PrimeField,
Fq: PrimeField + PrimeFieldBits,
{
pub(crate) x: Fp, //TODO: Make this not public
pub(crate) y: Fp,
x: Fp,
y: Fp,
is_infinity: bool,
_p: PhantomData<Fq>,
}
#[cfg(test)]
impl<Fp, Fq> Point<Fp, Fq>
where
Fp: PrimeField,
Fq: PrimeField + PrimeFieldBits,
{
#[allow(dead_code)]
pub fn new(x: Fp, y: Fp, is_infinity: bool) -> Self {
Self {
x,
@ -30,7 +461,6 @@ where
}
}
#[allow(dead_code)]
pub fn random_vartime() -> Self {
loop {
let x = Fp::random(&mut OsRng);
@ -90,30 +520,6 @@ where
}
}
#[allow(dead_code)]
pub fn scalar_mul_mont(&self, scalar: &Fq) -> Self {
let mut R0 = Self {
x: Fp::zero(),
y: Fp::zero(),
is_infinity: true,
_p: Default::default(),
};
let mut R1 = self.clone();
let bits = scalar.to_le_bits();
for i in (0..bits.len()).rev() {
if bits[i] {
R0 = R0.add(&R1);
R1 = R1.double();
} else {
R1 = R0.add(&R1);
R0 = R0.double();
}
}
R0
}
#[allow(dead_code)]
pub fn scalar_mul(&self, scalar: &Fq) -> Self {
let mut res = Self {
x: Fp::zero(),
@ -160,15 +566,11 @@ mod fq {
#[cfg(test)]
mod tests {
use super::*;
use super::{fp::Fp, fq::Fq};
use ff::Field;
use pasta_curves::arithmetic::CurveAffine;
use pasta_curves::group::Curve;
use pasta_curves::EpAffine;
use std::ops::Mul;
#[test]
fn test_ecc_ops() {
use super::{fp::Fp, fq::Fq};
// perform some curve arithmetic
let a = Point::<Fp, Fq>::random_vartime();
let b = Point::<Fp, Fq>::random_vartime();
@ -216,4 +618,68 @@ mod tests {
assert_eq!(d_pasta, d_pasta_2);
assert_eq!(e_pasta, e_pasta_2);
}
use crate::bellperson::shape_cs::ShapeCS;
use crate::bellperson::solver::SatisfyingAssignment;
use ff::{Field, PrimeFieldBits};
use pasta_curves::arithmetic::CurveAffine;
use pasta_curves::group::Curve;
use pasta_curves::EpAffine;
use std::ops::Mul;
type G = pasta_curves::pallas::Point;
type Fp = pasta_curves::pallas::Scalar;
type Fq = pasta_curves::vesta::Scalar;
use crate::bellperson::r1cs::{NovaShape, NovaWitness};
fn synthesize_smul<Fp, Fq, CS>(mut cs: CS) -> (AllocatedPoint<Fp>, AllocatedPoint<Fp>, Fq)
where
Fp: PrimeField,
Fq: PrimeField + PrimeFieldBits,
CS: ConstraintSystem<Fp>,
{
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
let s = Fq::random(&mut OsRng);
// Allocate random bits and only keep 128 bits
let bits: Vec<AllocatedBit> = s
.to_le_bits()
.into_iter()
.enumerate()
.map(|(i, bit)| AllocatedBit::alloc(cs.namespace(|| format!("bit {}", i)), Some(bit)))
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
.unwrap();
let e = a.scalar_mul(cs.namespace(|| "Scalar Mul"), bits).unwrap();
let _ = e.inputize(cs.namespace(|| "inputize e")).unwrap();
(a, e, s)
}
#[test]
fn test_ecc_circuit_ops() {
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_smul::<Fp, Fq, _>(cs.namespace(|| "synthesize"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let (a, e, s) = synthesize_smul::<Fp, Fq, _>(cs.namespace(|| "synthesize"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
let a_p: Point<Fp, Fq> = Point::new(
a.x.get_value().unwrap(),
a.y.get_value().unwrap(),
a.is_infinity.get_value().unwrap() == Fp::one(),
);
let e_p: Point<Fp, Fq> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == Fp::one(),
);
let e_new = a_p.scalar_mul(&s);
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
}

+ 0
- 552
src/gadgets/ecc_circuit.rs

@ -1,552 +0,0 @@
#![allow(non_snake_case)]
use crate::gadgets::utils::{
alloc_one, alloc_zero, conditionally_select, conditionally_select2, select_one_or, select_zero_or,
};
use bellperson::{
gadgets::{
boolean::{AllocatedBit, Boolean},
num::AllocatedNum,
Assignment,
},
ConstraintSystem, SynthesisError,
};
use ff::PrimeField;
use rand::rngs::OsRng;
#[derive(Clone)]
pub struct AllocatedPoint<Fp>
where
Fp: PrimeField,
{
pub(crate) x: AllocatedNum<Fp>,
pub(crate) y: AllocatedNum<Fp>,
pub(crate) is_infinity: AllocatedNum<Fp>,
}
impl<Fp> AllocatedPoint<Fp>
where
Fp: PrimeField,
{
// Creates a new allocated point from allocated nums.
pub fn new(x: AllocatedNum<Fp>, y: AllocatedNum<Fp>, is_infinity: AllocatedNum<Fp>) -> Self {
Self { x, y, is_infinity }
}
// Check that is infinity is 0/1
#[allow(dead_code)]
pub fn check_is_infinity<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
) -> Result<(), SynthesisError> {
// Check that is_infinity * ( 1 - is_infinity ) = 0
cs.enforce(
|| "is_infinity is bit",
|lc| lc + self.is_infinity.get_variable(),
|lc| lc + CS::one() - self.is_infinity.get_variable(),
|lc| lc,
);
Ok(())
}
#[allow(dead_code)]
// Allocate a random point. Only used for testing
pub fn random_vartime<CS: ConstraintSystem<Fp>>(mut cs: CS) -> Result<Self, SynthesisError> {
loop {
let x = Fp::random(&mut OsRng);
let y = (x * x * x + Fp::one() + Fp::one() + Fp::one() + Fp::one() + Fp::one()).sqrt();
if y.is_some().unwrap_u8() == 1 {
let x_alloc = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x))?;
let y_alloc = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y.unwrap()))?;
let is_infinity = alloc_zero(cs.namespace(|| "Is Infinity"))?;
return Ok(Self::new(x_alloc, y_alloc, is_infinity));
}
}
}
// Make the point io
#[allow(dead_code)]
pub fn inputize<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<(), SynthesisError> {
let _ = self.x.inputize(cs.namespace(|| "Input point.x"));
let _ = self.y.inputize(cs.namespace(|| "Input point.y"));
let _ = self
.is_infinity
.inputize(cs.namespace(|| "Input point.is_infinity"));
Ok(())
}
// Adds other point to this point and returns the result
// Assumes that both other.is_infinity and this.is_infinty are bits
pub fn add<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
other: &AllocatedPoint<Fp>,
) -> Result<Self, SynthesisError> {
// Allocate the boolean variables that check if either of the points is infinity
//************************************************************************/
// lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
//************************************************************************/
// First compute (other.x - self.x).inverse()
// If either self or other are 1 then compute bogus values
// x_diff = other != inf && self != inf ? (other.x - self.x) : 1
let x_diff_actual = AllocatedNum::alloc(cs.namespace(|| "actual x diff"), || {
Ok(*other.x.get_value().get()? - *self.x.get_value().get()?)
})?;
cs.enforce(
|| "actual x_diff is correct",
|lc| lc + other.x.get_variable() - self.x.get_variable(),
|lc| lc + CS::one(),
|lc| lc + x_diff_actual.get_variable(),
);
// Compute self.is_infinity OR other.is_infinity
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
Ok(*self.is_infinity.get_value().get()? * *other.is_infinity.get_value().get()?)
})?;
cs.enforce(
|| "at least one inf = self.is_infinity * other.is_infinity",
|lc| lc + self.is_infinity.get_variable(),
|lc| lc + other.is_infinity.get_variable(),
|lc| lc + at_least_one_inf.get_variable(),
);
// x_diff = 1 if either self.is_infinity or other.is_infinity else x_diff_actual
let x_diff = select_one_or(
cs.namespace(|| "Compute x_diff"),
&x_diff_actual,
&at_least_one_inf,
)?;
let x_diff_inv = AllocatedNum::alloc(cs.namespace(|| "x diff inverse"), || {
if *at_least_one_inf.get_value().get()? == Fp::one() {
// Set to default
Ok(Fp::one())
} else {
// Set to the actual inverse
let inv = (*other.x.get_value().get()? - *self.x.get_value().get()?).invert();
if inv.is_some().unwrap_u8() == 1 {
Ok(inv.unwrap())
} else {
Err(SynthesisError::DivisionByZero)
}
}
})?;
cs.enforce(
|| "Check inverse",
|lc| lc + x_diff.get_variable(),
|lc| lc + x_diff_inv.get_variable(),
|lc| lc + CS::one(),
);
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
Ok(
(*other.y.get_value().get()? - *self.y.get_value().get()?)
* x_diff_inv.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that lambda is correct",
|lc| lc + other.y.get_variable() - self.y.get_variable(),
|lc| lc + x_diff_inv.get_variable(),
|lc| lc + lambda.get_variable(),
);
//************************************************************************/
// x = lambda * lambda - self.x - other.x;
//************************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
*lambda.get_value().get()? * lambda.get_value().get()?
- *self.x.get_value().get()?
- *other.x.get_value().get()?,
)
})?;
cs.enforce(
|| "check that x is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + other.x.get_variable(),
);
//************************************************************************/
// y = lambda * (self.x - x) - self.y;
//************************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
*lambda.get_value().get()? * (*self.x.get_value().get()? - *x.get_value().get()?)
- *self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that y is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
let is_infinity = AllocatedNum::alloc(cs.namespace(|| "is infinity"), || Ok(Fp::zero()))?;
//************************************************************************/
// We only return the computed x, y if neither of the points is infinity.
// if self.is_infinity return other.clone()
// elif other.is_infinity return self.clone()
// Otherwise return the computed points.
//************************************************************************/
// Now compute the output x
let inner_x = conditionally_select2(
cs.namespace(|| "final x: inner if"),
&self.x,
&x,
&other.is_infinity,
)?;
let final_x = conditionally_select2(
cs.namespace(|| "final x: outer if"),
&other.x,
&inner_x,
&self.is_infinity,
)?;
// The output y
let inner_y = conditionally_select2(
cs.namespace(|| "final y: inner if"),
&self.y,
&y,
&other.is_infinity,
)?;
let final_y = conditionally_select2(
cs.namespace(|| "final y: outer if"),
&other.y,
&inner_y,
&self.is_infinity,
)?;
// The output is_infinity
let inner_is_infinity = conditionally_select2(
cs.namespace(|| "final is infinity: inner if"),
&self.is_infinity,
&is_infinity,
&other.is_infinity,
)?;
let final_is_infinity = conditionally_select2(
cs.namespace(|| "final is infinity: outer if"),
&other.is_infinity,
&inner_is_infinity,
&self.is_infinity,
)?;
Ok(Self::new(final_x, final_y, final_is_infinity))
}
pub fn double<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<Self, SynthesisError> {
//*************************************************************/
// lambda = (Fp::one() + Fp::one() + Fp::one())
// * self.x
// * self.x
// * ((Fp::one() + Fp::one()) * self.y).invert().unwrap();
/*************************************************************/
// Compute tmp = (Fp::one() + Fp::one())* self.y ? self != inf : 1
let tmp_actual = AllocatedNum::alloc(cs.namespace(|| "tmp_actual"), || {
Ok(*self.y.get_value().get()? + *self.y.get_value().get()?)
})?;
cs.enforce(
|| "check tmp_actual",
|lc| lc + CS::one() + CS::one(),
|lc| lc + self.y.get_variable(),
|lc| lc + tmp_actual.get_variable(),
);
let tmp = select_one_or(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
// Compute inv = tmp.invert
let tmp_inv = AllocatedNum::alloc(cs.namespace(|| "tmp inverse"), || {
if *self.is_infinity.get_value().get()? == Fp::one() {
// Return default value 1
Ok(Fp::one())
} else {
// Return the actual inverse
let inv = (*tmp.get_value().get()?).invert();
if inv.is_some().unwrap_u8() == 1 {
Ok(inv.unwrap())
} else {
Err(SynthesisError::DivisionByZero)
}
}
})?;
cs.enforce(
|| "Check inverse",
|lc| lc + tmp.get_variable(),
|lc| lc + tmp_inv.get_variable(),
|lc| lc + CS::one(),
);
// Now compute lambda as (Fp::one() + Fp::one + Fp::one()) * self.x * self.x * tmp_inv
let prod_1 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 1"), || {
Ok(*tmp_inv.get_value().get()? * self.x.get_value().get()?)
})?;
cs.enforce(
|| "Check prod 1",
|lc| lc + self.x.get_variable(),
|lc| lc + tmp_inv.get_variable(),
|lc| lc + prod_1.get_variable(),
);
let prod_2 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 2"), || {
Ok(*prod_1.get_value().get()? * self.x.get_value().get()?)
})?;
cs.enforce(
|| "Check prod 2",
|lc| lc + self.x.get_variable(),
|lc| lc + prod_1.get_variable(),
|lc| lc + prod_2.get_variable(),
);
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
Ok(*prod_2.get_value().get()? * (Fp::one() + Fp::one() + Fp::one()))
})?;
cs.enforce(
|| "Check lambda",
|lc| lc + CS::one() + CS::one() + CS::one(),
|lc| lc + prod_2.get_variable(),
|lc| lc + lambda.get_variable(),
);
/*************************************************************/
// x = lambda * lambda - self.x - self.x;
/*************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
((*lambda.get_value().get()?) * (*lambda.get_value().get()?))
- *self.x.get_value().get()?
- self.x.get_value().get()?,
)
})?;
cs.enforce(
|| "Check x",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + self.x.get_variable(),
);
/*************************************************************/
// y = lambda * (self.x - x) - self.y;
/*************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
(*lambda.get_value().get()?) * (*self.x.get_value().get()? - x.get_value().get()?)
- self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check y",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
/*************************************************************/
// Only return the computed x and y if the point is not infinity
/*************************************************************/
// x
let final_x = select_zero_or(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
// y
let final_y = select_zero_or(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
// is_infinity
let final_is_infinity = self.is_infinity.clone();
Ok(Self::new(final_x, final_y, final_is_infinity))
}
#[allow(dead_code)]
pub fn scalar_mul_mont<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
scalar: Vec<AllocatedBit>,
) -> Result<Self, SynthesisError> {
/*************************************************************/
// Initialize RO = Self {
// x: Fp::zero(),
// y: Fp::zero(),
// is_infinity: true,
// _p: Default::default(),
//};
/*************************************************************/
let zero = alloc_zero(cs.namespace(|| "Allocate zero"))?;
let one = alloc_one(cs.namespace(|| "Allocate one"))?;
let mut R0 = Self::new(zero.clone(), zero, one);
/*************************************************************/
// Initialize R1 and the bits of the scalar
/*************************************************************/
let mut R1 = self.clone();
for i in (0..scalar.len()).rev() {
/*************************************************************/
//if bits[i] {
// R0 = R0.add(&R1);
// R1 = R1.double();
//} else {
// R0 = R0.double();
// R1 = R0.add(&R1);
//}
/*************************************************************/
let R0_and_R1 = R0.add(cs.namespace(|| format!("{}: R0 + R1", i)), &R1)?;
let R0_double = R0.double(cs.namespace(|| format!("{}: 2 * R0", i)))?;
let R1_double = R1.double(cs.namespace(|| format!("{}: 2 * R1", i)))?;
R0 = Self::conditionally_select(
cs.namespace(|| format!("{}: Update R0", i)),
&R0_and_R1,
&R0_double,
&Boolean::from(scalar[i].clone()),
)?;
R1 = Self::conditionally_select(
cs.namespace(|| format!("{}: Update R1", i)),
&R1_double,
&R0_and_R1,
&Boolean::from(scalar[i].clone()),
)?;
}
Ok(R0)
}
#[allow(dead_code)]
pub fn scalar_mul<CS: ConstraintSystem<Fp>>(
&self,
mut cs: CS,
scalar: Vec<AllocatedBit>,
) -> Result<Self, SynthesisError> {
/*************************************************************/
// Initialize res = Self {
// x: Fp::zero(),
// y: Fp::zero(),
// is_infinity: true,
// _p: Default::default(),
//};
/*************************************************************/
let zero = alloc_zero(cs.namespace(|| "Allocate zero"))?;
let one = alloc_one(cs.namespace(|| "Allocate one"))?;
let mut res = Self::new(zero.clone(), zero, one);
for i in (0..scalar.len()).rev() {
/*************************************************************/
// res = res.double();
/*************************************************************/
res = res.double(cs.namespace(|| format!("{}: double", i)))?;
/*************************************************************/
// if scalar[i] {
// res = self.add(&res);
// }
/*************************************************************/
let self_and_res = self.add(cs.namespace(|| format!("{}: add", i)), &res)?;
res = Self::conditionally_select(
cs.namespace(|| format!("{}: Update res", i)),
&self_and_res,
&res,
&Boolean::from(scalar[i].clone()),
)?;
}
Ok(res)
}
/// If condition outputs a otherwise outputs b
pub fn conditionally_select<CS: ConstraintSystem<Fp>>(
mut cs: CS,
a: &Self,
b: &Self,
condition: &Boolean,
) -> Result<Self, SynthesisError> {
let x = conditionally_select(cs.namespace(|| "select x"), &a.x, &b.x, condition)?;
let y = conditionally_select(cs.namespace(|| "select y"), &a.y, &b.y, condition)?;
let is_infinity = conditionally_select(
cs.namespace(|| "select is_infinity"),
&a.is_infinity,
&b.is_infinity,
condition,
)?;
Ok(Self::new(x, y, is_infinity))
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::bellperson::shape_cs::ShapeCS;
use crate::bellperson::solver::SatisfyingAssignment;
type G = pasta_curves::pallas::Point;
type Fp = pasta_curves::pallas::Scalar;
type Fq = pasta_curves::vesta::Scalar;
use crate::bellperson::r1cs::{NovaShape, NovaWitness};
use crate::gadgets::ecc::Point;
use ff::PrimeFieldBits;
fn synthesize_smul<Fp, Fq, CS>(mut cs: CS) -> (AllocatedPoint<Fp>, AllocatedPoint<Fp>, Fq)
where
Fp: PrimeField,
Fq: PrimeField + PrimeFieldBits,
CS: ConstraintSystem<Fp>,
{
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
let s = Fq::random(&mut OsRng);
// Allocate random bits and only keep 128 bits
let bits: Vec<AllocatedBit> = s
.to_le_bits()
.into_iter()
.enumerate()
.map(|(i, bit)| AllocatedBit::alloc(cs.namespace(|| format!("bit {}", i)), Some(bit)))
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
.unwrap();
let e = a.scalar_mul(cs.namespace(|| "Scalar Mul"), bits).unwrap();
let _ = e.inputize(cs.namespace(|| "inputize e")).unwrap();
(a, e, s)
}
#[test]
fn test_ecc_circuit_ops() {
// First create the shape
let mut cs: ShapeCS<G> = ShapeCS::new();
let _ = synthesize_smul::<Fp, Fq, _>(cs.namespace(|| "synthesize"));
println!("Number of constraints: {}", cs.num_constraints());
let shape = cs.r1cs_shape();
let gens = cs.r1cs_gens();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
let (a, e, s) = synthesize_smul::<Fp, Fq, _>(cs.namespace(|| "synthesize"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
let a_p: Point<Fp, Fq> = Point::new(
a.x.get_value().unwrap(),
a.y.get_value().unwrap(),
a.is_infinity.get_value().unwrap() == Fp::one(),
);
let e_p: Point<Fp, Fq> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == Fp::one(),
);
let e_new = a_p.scalar_mul(&s);
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
// Make sure that this is satisfiable
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
}
}

+ 1
- 2
src/gadgets/mod.rs

@ -1,3 +1,2 @@
mod ecc;
pub mod ecc_circuit;
pub mod ecc;
pub mod utils;

Loading…
Cancel
Save