|
|
@ -1,26 +1,457 @@ |
|
|
|
#![allow(non_snake_case)]
|
|
|
|
use ff::{PrimeField, PrimeFieldBits};
|
|
|
|
use crate::gadgets::utils::{
|
|
|
|
alloc_one, alloc_zero, conditionally_select, conditionally_select2, select_one_or, select_zero_or,
|
|
|
|
};
|
|
|
|
use bellperson::{
|
|
|
|
gadgets::{
|
|
|
|
boolean::{AllocatedBit, Boolean},
|
|
|
|
num::AllocatedNum,
|
|
|
|
Assignment,
|
|
|
|
},
|
|
|
|
ConstraintSystem, SynthesisError,
|
|
|
|
};
|
|
|
|
use ff::PrimeField;
|
|
|
|
|
|
|
|
#[derive(Clone)]
|
|
|
|
pub struct AllocatedPoint<Fp>
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
{
|
|
|
|
pub(crate) x: AllocatedNum<Fp>,
|
|
|
|
pub(crate) y: AllocatedNum<Fp>,
|
|
|
|
pub(crate) is_infinity: AllocatedNum<Fp>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<Fp> AllocatedPoint<Fp>
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
{
|
|
|
|
// Creates a new allocated point from allocated nums.
|
|
|
|
pub fn new(x: AllocatedNum<Fp>, y: AllocatedNum<Fp>, is_infinity: AllocatedNum<Fp>) -> Self {
|
|
|
|
Self { x, y, is_infinity }
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that is infinity is 0/1
|
|
|
|
pub fn check_is_infinity<CS: ConstraintSystem<Fp>>(
|
|
|
|
&self,
|
|
|
|
mut cs: CS,
|
|
|
|
) -> Result<(), SynthesisError> {
|
|
|
|
// Check that is_infinity * ( 1 - is_infinity ) = 0
|
|
|
|
cs.enforce(
|
|
|
|
|| "is_infinity is bit",
|
|
|
|
|lc| lc + self.is_infinity.get_variable(),
|
|
|
|
|lc| lc + CS::one() - self.is_infinity.get_variable(),
|
|
|
|
|lc| lc,
|
|
|
|
);
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
|
|
|
// Allocate a random point. Only used for testing
|
|
|
|
#[cfg(test)]
|
|
|
|
pub fn random_vartime<CS: ConstraintSystem<Fp>>(mut cs: CS) -> Result<Self, SynthesisError> {
|
|
|
|
loop {
|
|
|
|
let x = Fp::random(&mut OsRng);
|
|
|
|
let y = (x * x * x + Fp::one() + Fp::one() + Fp::one() + Fp::one() + Fp::one()).sqrt();
|
|
|
|
if y.is_some().unwrap_u8() == 1 {
|
|
|
|
let x_alloc = AllocatedNum::alloc(cs.namespace(|| "x"), || Ok(x))?;
|
|
|
|
let y_alloc = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(y.unwrap()))?;
|
|
|
|
let is_infinity = alloc_zero(cs.namespace(|| "Is Infinity"))?;
|
|
|
|
return Ok(Self::new(x_alloc, y_alloc, is_infinity));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make the point io
|
|
|
|
#[cfg(test)]
|
|
|
|
pub fn inputize<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<(), SynthesisError> {
|
|
|
|
let _ = self.x.inputize(cs.namespace(|| "Input point.x"));
|
|
|
|
let _ = self.y.inputize(cs.namespace(|| "Input point.y"));
|
|
|
|
let _ = self
|
|
|
|
.is_infinity
|
|
|
|
.inputize(cs.namespace(|| "Input point.is_infinity"));
|
|
|
|
Ok(())
|
|
|
|
}
|
|
|
|
|
|
|
|
// Adds other point to this point and returns the result
|
|
|
|
// Assumes that both other.is_infinity and this.is_infinty are bits
|
|
|
|
pub fn add<CS: ConstraintSystem<Fp>>(
|
|
|
|
&self,
|
|
|
|
mut cs: CS,
|
|
|
|
other: &AllocatedPoint<Fp>,
|
|
|
|
) -> Result<Self, SynthesisError> {
|
|
|
|
// Allocate the boolean variables that check if either of the points is infinity
|
|
|
|
|
|
|
|
//************************************************************************/
|
|
|
|
// lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
|
|
|
|
//************************************************************************/
|
|
|
|
// First compute (other.x - self.x).inverse()
|
|
|
|
// If either self or other are 1 then compute bogus values
|
|
|
|
|
|
|
|
// x_diff = other != inf && self != inf ? (other.x - self.x) : 1
|
|
|
|
let x_diff_actual = AllocatedNum::alloc(cs.namespace(|| "actual x diff"), || {
|
|
|
|
Ok(*other.x.get_value().get()? - *self.x.get_value().get()?)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "actual x_diff is correct",
|
|
|
|
|lc| lc + other.x.get_variable() - self.x.get_variable(),
|
|
|
|
|lc| lc + CS::one(),
|
|
|
|
|lc| lc + x_diff_actual.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
// Compute self.is_infinity OR other.is_infinity
|
|
|
|
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
|
|
|
|
Ok(*self.is_infinity.get_value().get()? * *other.is_infinity.get_value().get()?)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "at least one inf = self.is_infinity * other.is_infinity",
|
|
|
|
|lc| lc + self.is_infinity.get_variable(),
|
|
|
|
|lc| lc + other.is_infinity.get_variable(),
|
|
|
|
|lc| lc + at_least_one_inf.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
// x_diff = 1 if either self.is_infinity or other.is_infinity else x_diff_actual
|
|
|
|
let x_diff = select_one_or(
|
|
|
|
cs.namespace(|| "Compute x_diff"),
|
|
|
|
&x_diff_actual,
|
|
|
|
&at_least_one_inf,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
let x_diff_inv = AllocatedNum::alloc(cs.namespace(|| "x diff inverse"), || {
|
|
|
|
if *at_least_one_inf.get_value().get()? == Fp::one() {
|
|
|
|
// Set to default
|
|
|
|
Ok(Fp::one())
|
|
|
|
} else {
|
|
|
|
// Set to the actual inverse
|
|
|
|
let inv = (*other.x.get_value().get()? - *self.x.get_value().get()?).invert();
|
|
|
|
if inv.is_some().unwrap_u8() == 1 {
|
|
|
|
Ok(inv.unwrap())
|
|
|
|
} else {
|
|
|
|
Err(SynthesisError::DivisionByZero)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
})?;
|
|
|
|
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check inverse",
|
|
|
|
|lc| lc + x_diff.get_variable(),
|
|
|
|
|lc| lc + x_diff_inv.get_variable(),
|
|
|
|
|lc| lc + CS::one(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
|
|
|
|
Ok(
|
|
|
|
(*other.y.get_value().get()? - *self.y.get_value().get()?)
|
|
|
|
* x_diff_inv.get_value().get()?,
|
|
|
|
)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check that lambda is correct",
|
|
|
|
|lc| lc + other.y.get_variable() - self.y.get_variable(),
|
|
|
|
|lc| lc + x_diff_inv.get_variable(),
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
//************************************************************************/
|
|
|
|
// x = lambda * lambda - self.x - other.x;
|
|
|
|
//************************************************************************/
|
|
|
|
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
|
|
|
|
Ok(
|
|
|
|
*lambda.get_value().get()? * lambda.get_value().get()?
|
|
|
|
- *self.x.get_value().get()?
|
|
|
|
- *other.x.get_value().get()?,
|
|
|
|
)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "check that x is correct",
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
|lc| lc + x.get_variable() + self.x.get_variable() + other.x.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
//************************************************************************/
|
|
|
|
// y = lambda * (self.x - x) - self.y;
|
|
|
|
//************************************************************************/
|
|
|
|
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
|
|
|
|
Ok(
|
|
|
|
*lambda.get_value().get()? * (*self.x.get_value().get()? - *x.get_value().get()?)
|
|
|
|
- *self.y.get_value().get()?,
|
|
|
|
)
|
|
|
|
})?;
|
|
|
|
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check that y is correct",
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
|lc| lc + self.x.get_variable() - x.get_variable(),
|
|
|
|
|lc| lc + y.get_variable() + self.y.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let is_infinity = AllocatedNum::alloc(cs.namespace(|| "is infinity"), || Ok(Fp::zero()))?;
|
|
|
|
|
|
|
|
//************************************************************************/
|
|
|
|
// We only return the computed x, y if neither of the points is infinity.
|
|
|
|
// if self.is_infinity return other.clone()
|
|
|
|
// elif other.is_infinity return self.clone()
|
|
|
|
// Otherwise return the computed points.
|
|
|
|
//************************************************************************/
|
|
|
|
// Now compute the output x
|
|
|
|
let inner_x = conditionally_select2(
|
|
|
|
cs.namespace(|| "final x: inner if"),
|
|
|
|
&self.x,
|
|
|
|
&x,
|
|
|
|
&other.is_infinity,
|
|
|
|
)?;
|
|
|
|
let final_x = conditionally_select2(
|
|
|
|
cs.namespace(|| "final x: outer if"),
|
|
|
|
&other.x,
|
|
|
|
&inner_x,
|
|
|
|
&self.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
// The output y
|
|
|
|
let inner_y = conditionally_select2(
|
|
|
|
cs.namespace(|| "final y: inner if"),
|
|
|
|
&self.y,
|
|
|
|
&y,
|
|
|
|
&other.is_infinity,
|
|
|
|
)?;
|
|
|
|
let final_y = conditionally_select2(
|
|
|
|
cs.namespace(|| "final y: outer if"),
|
|
|
|
&other.y,
|
|
|
|
&inner_y,
|
|
|
|
&self.is_infinity,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
// The output is_infinity
|
|
|
|
let inner_is_infinity = conditionally_select2(
|
|
|
|
cs.namespace(|| "final is infinity: inner if"),
|
|
|
|
&self.is_infinity,
|
|
|
|
&is_infinity,
|
|
|
|
&other.is_infinity,
|
|
|
|
)?;
|
|
|
|
let final_is_infinity = conditionally_select2(
|
|
|
|
cs.namespace(|| "final is infinity: outer if"),
|
|
|
|
&other.is_infinity,
|
|
|
|
&inner_is_infinity,
|
|
|
|
&self.is_infinity,
|
|
|
|
)?;
|
|
|
|
Ok(Self::new(final_x, final_y, final_is_infinity))
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn double<CS: ConstraintSystem<Fp>>(&self, mut cs: CS) -> Result<Self, SynthesisError> {
|
|
|
|
//*************************************************************/
|
|
|
|
// lambda = (Fp::one() + Fp::one() + Fp::one())
|
|
|
|
// * self.x
|
|
|
|
// * self.x
|
|
|
|
// * ((Fp::one() + Fp::one()) * self.y).invert().unwrap();
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
// Compute tmp = (Fp::one() + Fp::one())* self.y ? self != inf : 1
|
|
|
|
let tmp_actual = AllocatedNum::alloc(cs.namespace(|| "tmp_actual"), || {
|
|
|
|
Ok(*self.y.get_value().get()? + *self.y.get_value().get()?)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "check tmp_actual",
|
|
|
|
|lc| lc + CS::one() + CS::one(),
|
|
|
|
|lc| lc + self.y.get_variable(),
|
|
|
|
|lc| lc + tmp_actual.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let tmp = select_one_or(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
|
|
|
|
|
|
|
|
// Compute inv = tmp.invert
|
|
|
|
let tmp_inv = AllocatedNum::alloc(cs.namespace(|| "tmp inverse"), || {
|
|
|
|
if *self.is_infinity.get_value().get()? == Fp::one() {
|
|
|
|
// Return default value 1
|
|
|
|
Ok(Fp::one())
|
|
|
|
} else {
|
|
|
|
// Return the actual inverse
|
|
|
|
let inv = (*tmp.get_value().get()?).invert();
|
|
|
|
if inv.is_some().unwrap_u8() == 1 {
|
|
|
|
Ok(inv.unwrap())
|
|
|
|
} else {
|
|
|
|
Err(SynthesisError::DivisionByZero)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check inverse",
|
|
|
|
|lc| lc + tmp.get_variable(),
|
|
|
|
|lc| lc + tmp_inv.get_variable(),
|
|
|
|
|lc| lc + CS::one(),
|
|
|
|
);
|
|
|
|
|
|
|
|
// Now compute lambda as (Fp::one() + Fp::one + Fp::one()) * self.x * self.x * tmp_inv
|
|
|
|
let prod_1 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 1"), || {
|
|
|
|
Ok(*tmp_inv.get_value().get()? * self.x.get_value().get()?)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check prod 1",
|
|
|
|
|lc| lc + self.x.get_variable(),
|
|
|
|
|lc| lc + tmp_inv.get_variable(),
|
|
|
|
|lc| lc + prod_1.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let prod_2 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 2"), || {
|
|
|
|
Ok(*prod_1.get_value().get()? * self.x.get_value().get()?)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check prod 2",
|
|
|
|
|lc| lc + self.x.get_variable(),
|
|
|
|
|lc| lc + prod_1.get_variable(),
|
|
|
|
|lc| lc + prod_2.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
|
|
|
|
Ok(*prod_2.get_value().get()? * (Fp::one() + Fp::one() + Fp::one()))
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check lambda",
|
|
|
|
|lc| lc + CS::one() + CS::one() + CS::one(),
|
|
|
|
|lc| lc + prod_2.get_variable(),
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
/*************************************************************/
|
|
|
|
// x = lambda * lambda - self.x - self.x;
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
|
|
|
|
Ok(
|
|
|
|
((*lambda.get_value().get()?) * (*lambda.get_value().get()?))
|
|
|
|
- *self.x.get_value().get()?
|
|
|
|
- self.x.get_value().get()?,
|
|
|
|
)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check x",
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
|lc| lc + x.get_variable() + self.x.get_variable() + self.x.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
/*************************************************************/
|
|
|
|
// y = lambda * (self.x - x) - self.y;
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
|
|
|
|
Ok(
|
|
|
|
(*lambda.get_value().get()?) * (*self.x.get_value().get()? - x.get_value().get()?)
|
|
|
|
- self.y.get_value().get()?,
|
|
|
|
)
|
|
|
|
})?;
|
|
|
|
cs.enforce(
|
|
|
|
|| "Check y",
|
|
|
|
|lc| lc + lambda.get_variable(),
|
|
|
|
|lc| lc + self.x.get_variable() - x.get_variable(),
|
|
|
|
|lc| lc + y.get_variable() + self.y.get_variable(),
|
|
|
|
);
|
|
|
|
|
|
|
|
/*************************************************************/
|
|
|
|
// Only return the computed x and y if the point is not infinity
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
// x
|
|
|
|
let final_x = select_zero_or(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
|
|
|
|
|
|
|
|
// y
|
|
|
|
let final_y = select_zero_or(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
|
|
|
|
|
|
|
|
// is_infinity
|
|
|
|
let final_is_infinity = self.is_infinity.clone();
|
|
|
|
|
|
|
|
Ok(Self::new(final_x, final_y, final_is_infinity))
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn scalar_mul<CS: ConstraintSystem<Fp>>(
|
|
|
|
&self,
|
|
|
|
mut cs: CS,
|
|
|
|
scalar: Vec<AllocatedBit>,
|
|
|
|
) -> Result<Self, SynthesisError> {
|
|
|
|
/*************************************************************/
|
|
|
|
// Initialize res = Self {
|
|
|
|
// x: Fp::zero(),
|
|
|
|
// y: Fp::zero(),
|
|
|
|
// is_infinity: true,
|
|
|
|
// _p: Default::default(),
|
|
|
|
//};
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
let zero = alloc_zero(cs.namespace(|| "Allocate zero"))?;
|
|
|
|
let one = alloc_one(cs.namespace(|| "Allocate one"))?;
|
|
|
|
let mut res = Self::new(zero.clone(), zero, one);
|
|
|
|
|
|
|
|
for i in (0..scalar.len()).rev() {
|
|
|
|
/*************************************************************/
|
|
|
|
// res = res.double();
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
res = res.double(cs.namespace(|| format!("{}: double", i)))?;
|
|
|
|
|
|
|
|
/*************************************************************/
|
|
|
|
// if scalar[i] {
|
|
|
|
// res = self.add(&res);
|
|
|
|
// }
|
|
|
|
/*************************************************************/
|
|
|
|
|
|
|
|
let self_and_res = self.add(cs.namespace(|| format!("{}: add", i)), &res)?;
|
|
|
|
res = Self::conditionally_select(
|
|
|
|
cs.namespace(|| format!("{}: Update res", i)),
|
|
|
|
&self_and_res,
|
|
|
|
&res,
|
|
|
|
&Boolean::from(scalar[i].clone()),
|
|
|
|
)?;
|
|
|
|
}
|
|
|
|
Ok(res)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// If condition outputs a otherwise outputs b
|
|
|
|
pub fn conditionally_select<CS: ConstraintSystem<Fp>>(
|
|
|
|
mut cs: CS,
|
|
|
|
a: &Self,
|
|
|
|
b: &Self,
|
|
|
|
condition: &Boolean,
|
|
|
|
) -> Result<Self, SynthesisError> {
|
|
|
|
let x = conditionally_select(cs.namespace(|| "select x"), &a.x, &b.x, condition)?;
|
|
|
|
|
|
|
|
let y = conditionally_select(cs.namespace(|| "select y"), &a.y, &b.y, condition)?;
|
|
|
|
|
|
|
|
let is_infinity = conditionally_select(
|
|
|
|
cs.namespace(|| "select is_infinity"),
|
|
|
|
&a.is_infinity,
|
|
|
|
&b.is_infinity,
|
|
|
|
condition,
|
|
|
|
)?;
|
|
|
|
|
|
|
|
Ok(Self::new(x, y, is_infinity))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
use ff::PrimeFieldBits;
|
|
|
|
#[cfg(test)]
|
|
|
|
use rand::rngs::OsRng;
|
|
|
|
#[cfg(test)]
|
|
|
|
use std::marker::PhantomData;
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
#[derive(Debug, Clone)]
|
|
|
|
pub struct Point<Fp, Fq>
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
Fq: PrimeField + PrimeFieldBits,
|
|
|
|
{
|
|
|
|
pub(crate) x: Fp, //TODO: Make this not public
|
|
|
|
pub(crate) y: Fp,
|
|
|
|
x: Fp,
|
|
|
|
y: Fp,
|
|
|
|
is_infinity: bool,
|
|
|
|
_p: PhantomData<Fq>,
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
impl<Fp, Fq> Point<Fp, Fq>
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
Fq: PrimeField + PrimeFieldBits,
|
|
|
|
{
|
|
|
|
#[allow(dead_code)]
|
|
|
|
pub fn new(x: Fp, y: Fp, is_infinity: bool) -> Self {
|
|
|
|
Self {
|
|
|
|
x,
|
|
|
@ -30,7 +461,6 @@ where |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
pub fn random_vartime() -> Self {
|
|
|
|
loop {
|
|
|
|
let x = Fp::random(&mut OsRng);
|
|
|
@ -90,30 +520,6 @@ where |
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
pub fn scalar_mul_mont(&self, scalar: &Fq) -> Self {
|
|
|
|
let mut R0 = Self {
|
|
|
|
x: Fp::zero(),
|
|
|
|
y: Fp::zero(),
|
|
|
|
is_infinity: true,
|
|
|
|
_p: Default::default(),
|
|
|
|
};
|
|
|
|
|
|
|
|
let mut R1 = self.clone();
|
|
|
|
let bits = scalar.to_le_bits();
|
|
|
|
for i in (0..bits.len()).rev() {
|
|
|
|
if bits[i] {
|
|
|
|
R0 = R0.add(&R1);
|
|
|
|
R1 = R1.double();
|
|
|
|
} else {
|
|
|
|
R1 = R0.add(&R1);
|
|
|
|
R0 = R0.double();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
R0
|
|
|
|
}
|
|
|
|
|
|
|
|
#[allow(dead_code)]
|
|
|
|
pub fn scalar_mul(&self, scalar: &Fq) -> Self {
|
|
|
|
let mut res = Self {
|
|
|
|
x: Fp::zero(),
|
|
|
@ -160,15 +566,11 @@ mod fq { |
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::*;
|
|
|
|
use super::{fp::Fp, fq::Fq};
|
|
|
|
use ff::Field;
|
|
|
|
use pasta_curves::arithmetic::CurveAffine;
|
|
|
|
use pasta_curves::group::Curve;
|
|
|
|
use pasta_curves::EpAffine;
|
|
|
|
use std::ops::Mul;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_ecc_ops() {
|
|
|
|
use super::{fp::Fp, fq::Fq};
|
|
|
|
|
|
|
|
// perform some curve arithmetic
|
|
|
|
let a = Point::<Fp, Fq>::random_vartime();
|
|
|
|
let b = Point::<Fp, Fq>::random_vartime();
|
|
|
@ -216,4 +618,68 @@ mod tests { |
|
|
|
assert_eq!(d_pasta, d_pasta_2);
|
|
|
|
assert_eq!(e_pasta, e_pasta_2);
|
|
|
|
}
|
|
|
|
|
|
|
|
use crate::bellperson::shape_cs::ShapeCS;
|
|
|
|
use crate::bellperson::solver::SatisfyingAssignment;
|
|
|
|
use ff::{Field, PrimeFieldBits};
|
|
|
|
use pasta_curves::arithmetic::CurveAffine;
|
|
|
|
use pasta_curves::group::Curve;
|
|
|
|
use pasta_curves::EpAffine;
|
|
|
|
use std::ops::Mul;
|
|
|
|
type G = pasta_curves::pallas::Point;
|
|
|
|
type Fp = pasta_curves::pallas::Scalar;
|
|
|
|
type Fq = pasta_curves::vesta::Scalar;
|
|
|
|
use crate::bellperson::r1cs::{NovaShape, NovaWitness};
|
|
|
|
|
|
|
|
fn synthesize_smul<Fp, Fq, CS>(mut cs: CS) -> (AllocatedPoint<Fp>, AllocatedPoint<Fp>, Fq)
|
|
|
|
where
|
|
|
|
Fp: PrimeField,
|
|
|
|
Fq: PrimeField + PrimeFieldBits,
|
|
|
|
CS: ConstraintSystem<Fp>,
|
|
|
|
{
|
|
|
|
let a = AllocatedPoint::<Fp>::random_vartime(cs.namespace(|| "a")).unwrap();
|
|
|
|
let _ = a.inputize(cs.namespace(|| "inputize a")).unwrap();
|
|
|
|
let s = Fq::random(&mut OsRng);
|
|
|
|
// Allocate random bits and only keep 128 bits
|
|
|
|
let bits: Vec<AllocatedBit> = s
|
|
|
|
.to_le_bits()
|
|
|
|
.into_iter()
|
|
|
|
.enumerate()
|
|
|
|
.map(|(i, bit)| AllocatedBit::alloc(cs.namespace(|| format!("bit {}", i)), Some(bit)))
|
|
|
|
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
|
|
|
|
.unwrap();
|
|
|
|
let e = a.scalar_mul(cs.namespace(|| "Scalar Mul"), bits).unwrap();
|
|
|
|
let _ = e.inputize(cs.namespace(|| "inputize e")).unwrap();
|
|
|
|
(a, e, s)
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_ecc_circuit_ops() {
|
|
|
|
// First create the shape
|
|
|
|
let mut cs: ShapeCS<G> = ShapeCS::new();
|
|
|
|
let _ = synthesize_smul::<Fp, Fq, _>(cs.namespace(|| "synthesize"));
|
|
|
|
println!("Number of constraints: {}", cs.num_constraints());
|
|
|
|
let shape = cs.r1cs_shape();
|
|
|
|
let gens = cs.r1cs_gens();
|
|
|
|
|
|
|
|
// Then the satisfying assignment
|
|
|
|
let mut cs: SatisfyingAssignment<G> = SatisfyingAssignment::new();
|
|
|
|
let (a, e, s) = synthesize_smul::<Fp, Fq, _>(cs.namespace(|| "synthesize"));
|
|
|
|
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &gens).unwrap();
|
|
|
|
|
|
|
|
let a_p: Point<Fp, Fq> = Point::new(
|
|
|
|
a.x.get_value().unwrap(),
|
|
|
|
a.y.get_value().unwrap(),
|
|
|
|
a.is_infinity.get_value().unwrap() == Fp::one(),
|
|
|
|
);
|
|
|
|
let e_p: Point<Fp, Fq> = Point::new(
|
|
|
|
e.x.get_value().unwrap(),
|
|
|
|
e.y.get_value().unwrap(),
|
|
|
|
e.is_infinity.get_value().unwrap() == Fp::one(),
|
|
|
|
);
|
|
|
|
let e_new = a_p.scalar_mul(&s);
|
|
|
|
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
|
|
|
|
// Make sure that this is satisfiable
|
|
|
|
assert!(shape.is_sat(&gens, &inst, &witness).is_ok());
|
|
|
|
}
|
|
|
|
}
|