Support for arbitrary arity for step circuit's IO (#107)

* support for arbitrary arity for F

* revive MinRoot example

* revive tests

* revive ecdsa

* remove unused code

* use None instead of Some(1u32)

* revive benches

* fix clippy warning
This commit is contained in:
Srinath Setty
2022-08-16 11:35:17 -07:00
committed by GitHub
parent 0a7cbf925f
commit ccc6ccd4c7
13 changed files with 322 additions and 331 deletions

View File

@@ -26,7 +26,7 @@ use crate::bellperson::{
};
use ::bellperson::{Circuit, ConstraintSystem};
use circuit::{NovaAugmentedCircuit, NovaAugmentedCircuitInputs, NovaAugmentedCircuitParams};
use constants::{BN_LIMB_WIDTH, BN_N_LIMBS, NUM_FE_FOR_HASH, NUM_HASH_BITS};
use constants::{BN_LIMB_WIDTH, BN_N_LIMBS, NUM_FE_WITHOUT_IO_FOR_CRHF, NUM_HASH_BITS};
use core::marker::PhantomData;
use errors::NovaError;
use ff::Field;
@@ -48,6 +48,8 @@ where
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
{
F_arity_primary: usize,
F_arity_secondary: usize,
ro_consts_primary: ROConstants<G1>,
ro_consts_circuit_primary: ROConstantsCircuit<G2>,
r1cs_gens_primary: R1CSGens<G1>,
@@ -81,6 +83,9 @@ where
let ro_consts_primary: ROConstants<G1> = ROConstants::<G1>::new();
let ro_consts_secondary: ROConstants<G2> = ROConstants::<G2>::new();
let F_arity_primary = c_primary.arity();
let F_arity_secondary = c_secondary.arity();
// ro_consts_circuit_primart are parameterized by G2 because the type alias uses G2::Base = G1::Scalar
let ro_consts_circuit_primary: ROConstantsCircuit<G2> = ROConstantsCircuit::<G2>::new();
let ro_consts_circuit_secondary: ROConstantsCircuit<G1> = ROConstantsCircuit::<G1>::new();
@@ -110,6 +115,8 @@ where
let r1cs_shape_padded_secondary = r1cs_shape_secondary.pad();
Self {
F_arity_primary,
F_arity_secondary,
ro_consts_primary,
ro_consts_circuit_primary,
r1cs_gens_primary,
@@ -162,8 +169,8 @@ where
l_w_secondary: R1CSWitness<G2>,
l_u_secondary: R1CSInstance<G2>,
i: usize,
zi_primary: G1::Scalar,
zi_secondary: G2::Scalar,
zi_primary: Vec<G1::Scalar>,
zi_secondary: Vec<G2::Scalar>,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
@@ -182,9 +189,13 @@ where
recursive_snark: Option<Self>,
c_primary: C1,
c_secondary: C2,
z0_primary: G1::Scalar,
z0_secondary: G2::Scalar,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<Self, NovaError> {
if z0_primary.len() != pp.F_arity_primary || z0_secondary.len() != pp.F_arity_secondary {
return Err(NovaError::InvalidInitialInputLength);
}
match recursive_snark {
None => {
// base case for the primary
@@ -192,7 +203,7 @@ where
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
pp.r1cs_shape_secondary.get_digest(),
G1::Scalar::zero(),
z0_primary,
z0_primary.clone(),
None,
None,
None,
@@ -215,7 +226,7 @@ where
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.r1cs_shape_primary.get_digest(),
G2::Scalar::zero(),
z0_secondary,
z0_secondary.clone(),
None,
None,
Some(u_primary.clone()),
@@ -254,6 +265,10 @@ where
let zi_primary = c_primary.output(&z0_primary);
let zi_secondary = c_secondary.output(&z0_secondary);
if z0_primary.len() != pp.F_arity_primary || z0_secondary.len() != pp.F_arity_secondary {
return Err(NovaError::InvalidStepOutputLength);
}
Ok(Self {
r_W_primary,
r_U_primary,
@@ -287,7 +302,7 @@ where
pp.r1cs_shape_secondary.get_digest(),
G1::Scalar::from(r_snark.i as u64),
z0_primary,
Some(r_snark.zi_primary),
Some(r_snark.zi_primary.clone()),
Some(r_snark.r_U_secondary.clone()),
Some(r_snark.l_u_secondary.clone()),
Some(nifs_secondary.comm_T.decompress()?),
@@ -321,7 +336,7 @@ where
pp.r1cs_shape_primary.get_digest(),
G2::Scalar::from(r_snark.i as u64),
z0_secondary,
Some(r_snark.zi_secondary),
Some(r_snark.zi_secondary.clone()),
Some(r_snark.r_U_primary.clone()),
Some(l_u_primary.clone()),
Some(nifs_primary.comm_T.decompress()?),
@@ -367,9 +382,9 @@ where
&self,
pp: &PublicParams<G1, G2, C1, C2>,
num_steps: usize,
z0_primary: G1::Scalar,
z0_secondary: G2::Scalar,
) -> Result<(G1::Scalar, G2::Scalar), NovaError> {
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<(Vec<G1::Scalar>, Vec<G2::Scalar>), NovaError> {
// number of steps cannot be zero
if num_steps == 0 {
return Err(NovaError::ProofVerifyError);
@@ -391,18 +406,32 @@ where
// check if the output hashes in R1CS instances point to the right running instances
let (hash_primary, hash_secondary) = {
let mut hasher = <G2 as Group>::RO::new(pp.ro_consts_secondary.clone(), NUM_FE_FOR_HASH);
let mut hasher = <G2 as Group>::RO::new(
pp.ro_consts_secondary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * pp.F_arity_primary,
);
hasher.absorb(scalar_as_base::<G2>(pp.r1cs_shape_secondary.get_digest()));
hasher.absorb(G1::Scalar::from(num_steps as u64));
hasher.absorb(z0_primary);
hasher.absorb(self.zi_primary);
for e in &z0_primary {
hasher.absorb(*e);
}
for e in &self.zi_primary {
hasher.absorb(*e);
}
self.r_U_secondary.absorb_in_ro(&mut hasher);
let mut hasher2 = <G1 as Group>::RO::new(pp.ro_consts_primary.clone(), NUM_FE_FOR_HASH);
let mut hasher2 = <G1 as Group>::RO::new(
pp.ro_consts_primary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * pp.F_arity_secondary,
);
hasher2.absorb(scalar_as_base::<G1>(pp.r1cs_shape_primary.get_digest()));
hasher2.absorb(G2::Scalar::from(num_steps as u64));
hasher2.absorb(z0_secondary);
hasher2.absorb(self.zi_secondary);
for e in &z0_secondary {
hasher2.absorb(*e);
}
for e in &self.zi_secondary {
hasher2.absorb(*e);
}
self.r_U_primary.absorb_in_ro(&mut hasher2);
(
@@ -463,7 +492,7 @@ where
res_r_secondary?;
res_l_secondary?;
Ok((self.zi_primary, self.zi_secondary))
Ok((self.zi_primary.clone(), self.zi_secondary.clone()))
}
}
@@ -488,8 +517,8 @@ where
nifs_secondary: NIFS<G2>,
f_W_snark_secondary: S2,
zn_primary: G1::Scalar,
zn_secondary: G2::Scalar,
zn_primary: Vec<G1::Scalar>,
zn_secondary: Vec<G2::Scalar>,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
@@ -574,8 +603,8 @@ where
nifs_secondary,
f_W_snark_secondary: f_W_snark_secondary?,
zn_primary: recursive_snark.zi_primary,
zn_secondary: recursive_snark.zi_secondary,
zn_primary: recursive_snark.zi_primary.clone(),
zn_secondary: recursive_snark.zi_secondary.clone(),
_p_c1: Default::default(),
_p_c2: Default::default(),
@@ -587,9 +616,9 @@ where
&self,
pp: &PublicParams<G1, G2, C1, C2>,
num_steps: usize,
z0_primary: G1::Scalar,
z0_secondary: G2::Scalar,
) -> Result<(G1::Scalar, G2::Scalar), NovaError> {
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<(Vec<G1::Scalar>, Vec<G2::Scalar>), NovaError> {
// number of steps cannot be zero
if num_steps == 0 {
return Err(NovaError::ProofVerifyError);
@@ -606,18 +635,32 @@ where
// check if the output hashes in R1CS instances point to the right running instances
let (hash_primary, hash_secondary) = {
let mut hasher = <G2 as Group>::RO::new(pp.ro_consts_secondary.clone(), NUM_FE_FOR_HASH);
let mut hasher = <G2 as Group>::RO::new(
pp.ro_consts_secondary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * pp.F_arity_primary,
);
hasher.absorb(scalar_as_base::<G2>(pp.r1cs_shape_secondary.get_digest()));
hasher.absorb(G1::Scalar::from(num_steps as u64));
hasher.absorb(z0_primary);
hasher.absorb(self.zn_primary);
for e in z0_primary {
hasher.absorb(e);
}
for e in &self.zn_primary {
hasher.absorb(*e);
}
self.r_U_secondary.absorb_in_ro(&mut hasher);
let mut hasher2 = <G1 as Group>::RO::new(pp.ro_consts_primary.clone(), NUM_FE_FOR_HASH);
let mut hasher2 = <G1 as Group>::RO::new(
pp.ro_consts_primary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * pp.F_arity_secondary,
);
hasher2.absorb(scalar_as_base::<G1>(pp.r1cs_shape_primary.get_digest()));
hasher2.absorb(G2::Scalar::from(num_steps as u64));
hasher2.absorb(z0_secondary);
hasher2.absorb(self.zn_secondary);
for e in z0_secondary {
hasher2.absorb(e);
}
for e in &self.zn_secondary {
hasher2.absorb(*e);
}
self.r_U_primary.absorb_in_ro(&mut hasher2);
(
@@ -665,7 +708,7 @@ where
res_primary?;
res_secondary?;
Ok((self.zn_primary, self.zn_secondary))
Ok((self.zn_primary.clone(), self.zn_secondary.clone()))
}
}
@@ -690,15 +733,19 @@ mod tests {
where
F: PrimeField,
{
fn arity(&self) -> usize {
1
}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
z: &[AllocatedNum<F>],
) -> Result<Vec<AllocatedNum<F>>, SynthesisError> {
// Consider a cubic equation: `x^3 + x + 5 = y`, where `x` and `y` are respectively the input and output.
let x = z;
let x = &z[0];
let x_sq = x.square(cs.namespace(|| "x_sq"))?;
let x_cu = x_sq.mul(cs.namespace(|| "x_cu"), &x)?;
let x_cu = x_sq.mul(cs.namespace(|| "x_cu"), x)?;
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(x_cu.get_value().unwrap() + x.get_value().unwrap() + F::from(5u64))
})?;
@@ -718,11 +765,11 @@ mod tests {
|lc| lc + y.get_variable(),
);
Ok(y)
Ok(vec![y])
}
fn output(&self, z: &F) -> F {
*z * *z * *z + z + F::from(5u64)
fn output(&self, z: &[F]) -> Vec<F> {
vec![z[0] * z[0] * z[0] + z[0] + F::from(5u64)]
}
}
@@ -744,8 +791,8 @@ mod tests {
None,
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
<G1 as Group>::Scalar::zero(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::zero()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
@@ -754,8 +801,8 @@ mod tests {
let res = recursive_snark.verify(
&pp,
num_steps,
<G1 as Group>::Scalar::zero(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::zero()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
}
@@ -791,8 +838,8 @@ mod tests {
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
@@ -801,8 +848,8 @@ mod tests {
let res = recursive_snark_unwrapped.verify(
&pp,
i + 1,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
@@ -817,21 +864,21 @@ mod tests {
let res = recursive_snark.verify(
&pp,
num_steps,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
// sanity: check the claimed output with a direct computation of the same
assert_eq!(zn_primary, <G1 as Group>::Scalar::one());
let mut zn_secondary_direct = <G2 as Group>::Scalar::zero();
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
let mut zn_secondary_direct = vec![<G2 as Group>::Scalar::zero()];
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit::default().output(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, <G2 as Group>::Scalar::from(2460515u64));
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
}
#[test]
@@ -865,8 +912,8 @@ mod tests {
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
@@ -879,21 +926,21 @@ mod tests {
let res = recursive_snark.verify(
&pp,
num_steps,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
// sanity: check the claimed output with a direct computation of the same
assert_eq!(zn_primary, <G1 as Group>::Scalar::one());
let mut zn_secondary_direct = <G2 as Group>::Scalar::zero();
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
let mut zn_secondary_direct = vec![<G2 as Group>::Scalar::zero()];
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit::default().output(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, <G2 as Group>::Scalar::from(2460515u64));
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark);
@@ -904,8 +951,8 @@ mod tests {
let res = compressed_snark.verify(
&pp,
num_steps,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
}
@@ -922,7 +969,7 @@ mod tests {
where
F: PrimeField,
{
fn new(num_steps: usize) -> (F, Vec<Self>) {
fn new(num_steps: usize) -> (Vec<F>, Vec<Self>) {
let mut powers = Vec::new();
let rng = &mut rand::rngs::OsRng;
let mut seed = F::random(rng);
@@ -939,7 +986,7 @@ mod tests {
// reverse the powers to get roots
let roots = powers.into_iter().rev().collect::<Vec<Self>>();
(roots[0].y, roots[1..].to_vec())
(vec![roots[0].y], roots[1..].to_vec())
}
}
@@ -947,12 +994,16 @@ mod tests {
where
F: PrimeField,
{
fn arity(&self) -> usize {
1
}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: AllocatedNum<F>,
) -> Result<AllocatedNum<F>, SynthesisError> {
let x = z;
z: &[AllocatedNum<F>],
) -> Result<Vec<AllocatedNum<F>>, SynthesisError> {
let x = &z[0];
// we allocate a variable and set it to the provided non-derministic advice.
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(self.y))?;
@@ -969,12 +1020,12 @@ mod tests {
|lc| lc + x.get_variable(),
);
Ok(y)
Ok(vec![y])
}
fn output(&self, z: &F) -> F {
fn output(&self, z: &[F]) -> Vec<F> {
// sanity check
let x = *z;
let x = z[0];
let y_pow_5 = {
let y = self.y;
let y_sq = y.square();
@@ -985,7 +1036,7 @@ mod tests {
// return non-deterministic advice
// as the output of the step
self.y
vec![self.y]
}
}
@@ -1007,7 +1058,7 @@ mod tests {
// produce non-deterministic advice
let (z0_primary, roots) = FifthRootCheckingCircuit::new(num_steps);
let z0_secondary = <G2 as Group>::Scalar::zero();
let z0_secondary = vec![<G2 as Group>::Scalar::zero()];
// produce a recursive SNARK
let mut recursive_snark: Option<
@@ -1025,8 +1076,8 @@ mod tests {
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
z0_primary,
z0_secondary,
z0_primary.clone(),
z0_secondary.clone(),
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
@@ -1036,7 +1087,7 @@ mod tests {
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone());
assert!(res.is_ok());
// produce a compressed SNARK
@@ -1067,8 +1118,8 @@ mod tests {
None,
TrivialTestCircuit::default(),
CubicCircuit::default(),
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
@@ -1077,14 +1128,14 @@ mod tests {
let res = recursive_snark.verify(
&pp,
num_steps,
<G1 as Group>::Scalar::one(),
<G2 as Group>::Scalar::zero(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
assert_eq!(zn_primary, <G1 as Group>::Scalar::one());
assert_eq!(zn_secondary, <G2 as Group>::Scalar::from(5u64));
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(5u64)]);
}
}