mirror of
https://github.com/arnaucube/Nova.git
synced 2026-01-21 05:11:34 +01:00
Reorganize various Spartan SNARKs and make the direct interface more generic (#195)
* reorganize different variants of spartan and make direct snark more generic * cargo fmt
This commit is contained in:
532
src/spartan/snark.rs
Normal file
532
src/spartan/snark.rs
Normal file
@@ -0,0 +1,532 @@
|
||||
//! This module implements RelaxedR1CSSNARKTrait using Spartan that is generic
|
||||
//! over the polynomial commitment and evaluation argument (i.e., a PCS)
|
||||
//! This version of Spartan does not use preprocessing so the verifier keeps the entire
|
||||
//! description of R1CS matrices. This is essentially optimal for the verifier when using
|
||||
//! an IPA-based polynomial commitment scheme.
|
||||
|
||||
use crate::{
|
||||
compute_digest,
|
||||
errors::NovaError,
|
||||
r1cs::{R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness},
|
||||
spartan::{
|
||||
polynomial::{EqPolynomial, MultilinearPolynomial, SparsePolynomial},
|
||||
powers,
|
||||
sumcheck::SumcheckProof,
|
||||
PolyEvalInstance, PolyEvalWitness,
|
||||
},
|
||||
traits::{
|
||||
evaluation::EvaluationEngineTrait, snark::RelaxedR1CSSNARKTrait, Group, TranscriptEngineTrait,
|
||||
},
|
||||
Commitment, CommitmentKey,
|
||||
};
|
||||
use ff::Field;
|
||||
use itertools::concat;
|
||||
use rayon::prelude::*;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// A type that represents the prover's key
|
||||
#[derive(Serialize, Deserialize)]
|
||||
#[serde(bound = "")]
|
||||
pub struct ProverKey<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
|
||||
pk_ee: EE::ProverKey,
|
||||
S: R1CSShape<G>,
|
||||
vk_digest: G::Scalar, // digest of the verifier's key
|
||||
}
|
||||
|
||||
/// A type that represents the verifier's key
|
||||
#[derive(Serialize, Deserialize)]
|
||||
#[serde(bound = "")]
|
||||
pub struct VerifierKey<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
|
||||
vk_ee: EE::VerifierKey,
|
||||
S: R1CSShape<G>,
|
||||
digest: G::Scalar,
|
||||
}
|
||||
|
||||
/// A succinct proof of knowledge of a witness to a relaxed R1CS instance
|
||||
/// The proof is produced using Spartan's combination of the sum-check and
|
||||
/// the commitment to a vector viewed as a polynomial commitment
|
||||
#[derive(Serialize, Deserialize)]
|
||||
#[serde(bound = "")]
|
||||
pub struct RelaxedR1CSSNARK<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
|
||||
sc_proof_outer: SumcheckProof<G>,
|
||||
claims_outer: (G::Scalar, G::Scalar, G::Scalar),
|
||||
eval_E: G::Scalar,
|
||||
sc_proof_inner: SumcheckProof<G>,
|
||||
eval_W: G::Scalar,
|
||||
sc_proof_batch: SumcheckProof<G>,
|
||||
evals_batch: Vec<G::Scalar>,
|
||||
eval_arg: EE::EvaluationArgument,
|
||||
}
|
||||
|
||||
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> RelaxedR1CSSNARKTrait<G>
|
||||
for RelaxedR1CSSNARK<G, EE>
|
||||
{
|
||||
type ProverKey = ProverKey<G, EE>;
|
||||
type VerifierKey = VerifierKey<G, EE>;
|
||||
|
||||
fn setup(
|
||||
ck: &CommitmentKey<G>,
|
||||
S: &R1CSShape<G>,
|
||||
) -> Result<(Self::ProverKey, Self::VerifierKey), NovaError> {
|
||||
let (pk_ee, vk_ee) = EE::setup(ck);
|
||||
|
||||
let S = S.pad();
|
||||
|
||||
let vk = {
|
||||
let mut vk = VerifierKey {
|
||||
vk_ee,
|
||||
S: S.clone(),
|
||||
digest: G::Scalar::ZERO,
|
||||
};
|
||||
vk.digest = compute_digest::<G, VerifierKey<G, EE>>(&vk);
|
||||
vk
|
||||
};
|
||||
|
||||
let pk = ProverKey {
|
||||
pk_ee,
|
||||
S,
|
||||
vk_digest: vk.digest,
|
||||
};
|
||||
|
||||
Ok((pk, vk))
|
||||
}
|
||||
|
||||
/// produces a succinct proof of satisfiability of a RelaxedR1CS instance
|
||||
fn prove(
|
||||
ck: &CommitmentKey<G>,
|
||||
pk: &Self::ProverKey,
|
||||
U: &RelaxedR1CSInstance<G>,
|
||||
W: &RelaxedR1CSWitness<G>,
|
||||
) -> Result<Self, NovaError> {
|
||||
let W = W.pad(&pk.S); // pad the witness
|
||||
let mut transcript = G::TE::new(b"RelaxedR1CSSNARK");
|
||||
|
||||
// sanity check that R1CSShape has certain size characteristics
|
||||
assert_eq!(pk.S.num_cons.next_power_of_two(), pk.S.num_cons);
|
||||
assert_eq!(pk.S.num_vars.next_power_of_two(), pk.S.num_vars);
|
||||
assert_eq!(pk.S.num_io.next_power_of_two(), pk.S.num_io);
|
||||
assert!(pk.S.num_io < pk.S.num_vars);
|
||||
|
||||
// append the digest of vk (which includes R1CS matrices) and the RelaxedR1CSInstance to the transcript
|
||||
transcript.absorb(b"vk", &pk.vk_digest);
|
||||
transcript.absorb(b"U", U);
|
||||
|
||||
// compute the full satisfying assignment by concatenating W.W, U.u, and U.X
|
||||
let mut z = concat(vec![W.W.clone(), vec![U.u], U.X.clone()]);
|
||||
|
||||
let (num_rounds_x, num_rounds_y) = (
|
||||
(pk.S.num_cons as f64).log2() as usize,
|
||||
((pk.S.num_vars as f64).log2() as usize + 1),
|
||||
);
|
||||
|
||||
// outer sum-check
|
||||
let tau = (0..num_rounds_x)
|
||||
.map(|_i| transcript.squeeze(b"t"))
|
||||
.collect::<Result<Vec<G::Scalar>, NovaError>>()?;
|
||||
|
||||
let mut poly_tau = MultilinearPolynomial::new(EqPolynomial::new(tau).evals());
|
||||
let (mut poly_Az, mut poly_Bz, poly_Cz, mut poly_uCz_E) = {
|
||||
let (poly_Az, poly_Bz, poly_Cz) = pk.S.multiply_vec(&z)?;
|
||||
let poly_uCz_E = (0..pk.S.num_cons)
|
||||
.map(|i| U.u * poly_Cz[i] + W.E[i])
|
||||
.collect::<Vec<G::Scalar>>();
|
||||
(
|
||||
MultilinearPolynomial::new(poly_Az),
|
||||
MultilinearPolynomial::new(poly_Bz),
|
||||
MultilinearPolynomial::new(poly_Cz),
|
||||
MultilinearPolynomial::new(poly_uCz_E),
|
||||
)
|
||||
};
|
||||
|
||||
let comb_func_outer =
|
||||
|poly_A_comp: &G::Scalar,
|
||||
poly_B_comp: &G::Scalar,
|
||||
poly_C_comp: &G::Scalar,
|
||||
poly_D_comp: &G::Scalar|
|
||||
-> G::Scalar { *poly_A_comp * (*poly_B_comp * *poly_C_comp - *poly_D_comp) };
|
||||
let (sc_proof_outer, r_x, claims_outer) = SumcheckProof::prove_cubic_with_additive_term(
|
||||
&G::Scalar::ZERO, // claim is zero
|
||||
num_rounds_x,
|
||||
&mut poly_tau,
|
||||
&mut poly_Az,
|
||||
&mut poly_Bz,
|
||||
&mut poly_uCz_E,
|
||||
comb_func_outer,
|
||||
&mut transcript,
|
||||
)?;
|
||||
|
||||
// claims from the end of sum-check
|
||||
let (claim_Az, claim_Bz): (G::Scalar, G::Scalar) = (claims_outer[1], claims_outer[2]);
|
||||
let claim_Cz = poly_Cz.evaluate(&r_x);
|
||||
let eval_E = MultilinearPolynomial::new(W.E.clone()).evaluate(&r_x);
|
||||
transcript.absorb(
|
||||
b"claims_outer",
|
||||
&[claim_Az, claim_Bz, claim_Cz, eval_E].as_slice(),
|
||||
);
|
||||
|
||||
// inner sum-check
|
||||
let r = transcript.squeeze(b"r")?;
|
||||
let claim_inner_joint = claim_Az + r * claim_Bz + r * r * claim_Cz;
|
||||
|
||||
let poly_ABC = {
|
||||
// compute the initial evaluation table for R(\tau, x)
|
||||
let evals_rx = EqPolynomial::new(r_x.clone()).evals();
|
||||
|
||||
// Bounds "row" variables of (A, B, C) matrices viewed as 2d multilinear polynomials
|
||||
let compute_eval_table_sparse =
|
||||
|S: &R1CSShape<G>, rx: &[G::Scalar]| -> (Vec<G::Scalar>, Vec<G::Scalar>, Vec<G::Scalar>) {
|
||||
assert_eq!(rx.len(), S.num_cons);
|
||||
|
||||
let inner = |M: &Vec<(usize, usize, G::Scalar)>, M_evals: &mut Vec<G::Scalar>| {
|
||||
for (row, col, val) in M {
|
||||
M_evals[*col] += rx[*row] * val;
|
||||
}
|
||||
};
|
||||
|
||||
let (A_evals, (B_evals, C_evals)) = rayon::join(
|
||||
|| {
|
||||
let mut A_evals: Vec<G::Scalar> = vec![G::Scalar::ZERO; 2 * S.num_vars];
|
||||
inner(&S.A, &mut A_evals);
|
||||
A_evals
|
||||
},
|
||||
|| {
|
||||
rayon::join(
|
||||
|| {
|
||||
let mut B_evals: Vec<G::Scalar> = vec![G::Scalar::ZERO; 2 * S.num_vars];
|
||||
inner(&S.B, &mut B_evals);
|
||||
B_evals
|
||||
},
|
||||
|| {
|
||||
let mut C_evals: Vec<G::Scalar> = vec![G::Scalar::ZERO; 2 * S.num_vars];
|
||||
inner(&S.C, &mut C_evals);
|
||||
C_evals
|
||||
},
|
||||
)
|
||||
},
|
||||
);
|
||||
|
||||
(A_evals, B_evals, C_evals)
|
||||
};
|
||||
|
||||
let (evals_A, evals_B, evals_C) = compute_eval_table_sparse(&pk.S, &evals_rx);
|
||||
|
||||
assert_eq!(evals_A.len(), evals_B.len());
|
||||
assert_eq!(evals_A.len(), evals_C.len());
|
||||
(0..evals_A.len())
|
||||
.into_par_iter()
|
||||
.map(|i| evals_A[i] + r * evals_B[i] + r * r * evals_C[i])
|
||||
.collect::<Vec<G::Scalar>>()
|
||||
};
|
||||
|
||||
let poly_z = {
|
||||
z.resize(pk.S.num_vars * 2, G::Scalar::ZERO);
|
||||
z
|
||||
};
|
||||
|
||||
let comb_func = |poly_A_comp: &G::Scalar, poly_B_comp: &G::Scalar| -> G::Scalar {
|
||||
*poly_A_comp * *poly_B_comp
|
||||
};
|
||||
let (sc_proof_inner, r_y, _claims_inner) = SumcheckProof::prove_quad(
|
||||
&claim_inner_joint,
|
||||
num_rounds_y,
|
||||
&mut MultilinearPolynomial::new(poly_ABC),
|
||||
&mut MultilinearPolynomial::new(poly_z),
|
||||
comb_func,
|
||||
&mut transcript,
|
||||
)?;
|
||||
|
||||
// add additional claims about W and E polynomials to the list from CC
|
||||
let mut w_u_vec = Vec::new();
|
||||
let eval_W = MultilinearPolynomial::evaluate_with(&W.W, &r_y[1..]);
|
||||
w_u_vec.push((
|
||||
PolyEvalWitness { p: W.W.clone() },
|
||||
PolyEvalInstance {
|
||||
c: U.comm_W,
|
||||
x: r_y[1..].to_vec(),
|
||||
e: eval_W,
|
||||
},
|
||||
));
|
||||
|
||||
w_u_vec.push((
|
||||
PolyEvalWitness { p: W.E },
|
||||
PolyEvalInstance {
|
||||
c: U.comm_E,
|
||||
x: r_x,
|
||||
e: eval_E,
|
||||
},
|
||||
));
|
||||
|
||||
// We will now reduce a vector of claims of evaluations at different points into claims about them at the same point.
|
||||
// For example, eval_W =? W(r_y[1..]) and eval_E =? E(r_x) into
|
||||
// two claims: eval_W_prime =? W(rz) and eval_E_prime =? E(rz)
|
||||
// We can them combine the two into one: eval_W_prime + gamma * eval_E_prime =? (W + gamma*E)(rz),
|
||||
// where gamma is a public challenge
|
||||
// Since commitments to W and E are homomorphic, the verifier can compute a commitment
|
||||
// to the batched polynomial.
|
||||
assert!(w_u_vec.len() >= 2);
|
||||
|
||||
let (w_vec, u_vec): (Vec<PolyEvalWitness<G>>, Vec<PolyEvalInstance<G>>) =
|
||||
w_u_vec.into_iter().unzip();
|
||||
let w_vec_padded = PolyEvalWitness::pad(&w_vec); // pad the polynomials to be of the same size
|
||||
let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points
|
||||
|
||||
// generate a challenge
|
||||
let rho = transcript.squeeze(b"r")?;
|
||||
let num_claims = w_vec_padded.len();
|
||||
let powers_of_rho = powers::<G>(&rho, num_claims);
|
||||
let claim_batch_joint = u_vec_padded
|
||||
.iter()
|
||||
.zip(powers_of_rho.iter())
|
||||
.map(|(u, p)| u.e * p)
|
||||
.sum();
|
||||
|
||||
let mut polys_left: Vec<MultilinearPolynomial<G::Scalar>> = w_vec_padded
|
||||
.iter()
|
||||
.map(|w| MultilinearPolynomial::new(w.p.clone()))
|
||||
.collect();
|
||||
let mut polys_right: Vec<MultilinearPolynomial<G::Scalar>> = u_vec_padded
|
||||
.iter()
|
||||
.map(|u| MultilinearPolynomial::new(EqPolynomial::new(u.x.clone()).evals()))
|
||||
.collect();
|
||||
|
||||
let num_rounds_z = u_vec_padded[0].x.len();
|
||||
let comb_func = |poly_A_comp: &G::Scalar, poly_B_comp: &G::Scalar| -> G::Scalar {
|
||||
*poly_A_comp * *poly_B_comp
|
||||
};
|
||||
let (sc_proof_batch, r_z, claims_batch) = SumcheckProof::prove_quad_batch(
|
||||
&claim_batch_joint,
|
||||
num_rounds_z,
|
||||
&mut polys_left,
|
||||
&mut polys_right,
|
||||
&powers_of_rho,
|
||||
comb_func,
|
||||
&mut transcript,
|
||||
)?;
|
||||
|
||||
let (claims_batch_left, _): (Vec<G::Scalar>, Vec<G::Scalar>) = claims_batch;
|
||||
|
||||
transcript.absorb(b"l", &claims_batch_left.as_slice());
|
||||
|
||||
// we now combine evaluation claims at the same point rz into one
|
||||
let gamma = transcript.squeeze(b"g")?;
|
||||
let powers_of_gamma: Vec<G::Scalar> = powers::<G>(&gamma, num_claims);
|
||||
let comm_joint = u_vec_padded
|
||||
.iter()
|
||||
.zip(powers_of_gamma.iter())
|
||||
.map(|(u, g_i)| u.c * *g_i)
|
||||
.fold(Commitment::<G>::default(), |acc, item| acc + item);
|
||||
let poly_joint = PolyEvalWitness::weighted_sum(&w_vec_padded, &powers_of_gamma);
|
||||
let eval_joint = claims_batch_left
|
||||
.iter()
|
||||
.zip(powers_of_gamma.iter())
|
||||
.map(|(e, g_i)| *e * *g_i)
|
||||
.sum();
|
||||
|
||||
let eval_arg = EE::prove(
|
||||
ck,
|
||||
&pk.pk_ee,
|
||||
&mut transcript,
|
||||
&comm_joint,
|
||||
&poly_joint.p,
|
||||
&r_z,
|
||||
&eval_joint,
|
||||
)?;
|
||||
|
||||
Ok(RelaxedR1CSSNARK {
|
||||
sc_proof_outer,
|
||||
claims_outer: (claim_Az, claim_Bz, claim_Cz),
|
||||
eval_E,
|
||||
sc_proof_inner,
|
||||
eval_W,
|
||||
sc_proof_batch,
|
||||
evals_batch: claims_batch_left,
|
||||
eval_arg,
|
||||
})
|
||||
}
|
||||
|
||||
/// verifies a proof of satisfiability of a RelaxedR1CS instance
|
||||
fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance<G>) -> Result<(), NovaError> {
|
||||
let mut transcript = G::TE::new(b"RelaxedR1CSSNARK");
|
||||
|
||||
// append the digest of R1CS matrices and the RelaxedR1CSInstance to the transcript
|
||||
transcript.absorb(b"vk", &vk.digest);
|
||||
transcript.absorb(b"U", U);
|
||||
|
||||
let (num_rounds_x, num_rounds_y) = (
|
||||
(vk.S.num_cons as f64).log2() as usize,
|
||||
((vk.S.num_vars as f64).log2() as usize + 1),
|
||||
);
|
||||
|
||||
// outer sum-check
|
||||
let tau = (0..num_rounds_x)
|
||||
.map(|_i| transcript.squeeze(b"t"))
|
||||
.collect::<Result<Vec<G::Scalar>, NovaError>>()?;
|
||||
|
||||
let (claim_outer_final, r_x) =
|
||||
self
|
||||
.sc_proof_outer
|
||||
.verify(G::Scalar::ZERO, num_rounds_x, 3, &mut transcript)?;
|
||||
|
||||
// verify claim_outer_final
|
||||
let (claim_Az, claim_Bz, claim_Cz) = self.claims_outer;
|
||||
let taus_bound_rx = EqPolynomial::new(tau).evaluate(&r_x);
|
||||
let claim_outer_final_expected =
|
||||
taus_bound_rx * (claim_Az * claim_Bz - U.u * claim_Cz - self.eval_E);
|
||||
if claim_outer_final != claim_outer_final_expected {
|
||||
return Err(NovaError::InvalidSumcheckProof);
|
||||
}
|
||||
|
||||
transcript.absorb(
|
||||
b"claims_outer",
|
||||
&[
|
||||
self.claims_outer.0,
|
||||
self.claims_outer.1,
|
||||
self.claims_outer.2,
|
||||
self.eval_E,
|
||||
]
|
||||
.as_slice(),
|
||||
);
|
||||
|
||||
// inner sum-check
|
||||
let r = transcript.squeeze(b"r")?;
|
||||
let claim_inner_joint =
|
||||
self.claims_outer.0 + r * self.claims_outer.1 + r * r * self.claims_outer.2;
|
||||
|
||||
let (claim_inner_final, r_y) =
|
||||
self
|
||||
.sc_proof_inner
|
||||
.verify(claim_inner_joint, num_rounds_y, 2, &mut transcript)?;
|
||||
|
||||
// verify claim_inner_final
|
||||
let eval_Z = {
|
||||
let eval_X = {
|
||||
// constant term
|
||||
let mut poly_X = vec![(0, U.u)];
|
||||
//remaining inputs
|
||||
poly_X.extend(
|
||||
(0..U.X.len())
|
||||
.map(|i| (i + 1, U.X[i]))
|
||||
.collect::<Vec<(usize, G::Scalar)>>(),
|
||||
);
|
||||
SparsePolynomial::new((vk.S.num_vars as f64).log2() as usize, poly_X).evaluate(&r_y[1..])
|
||||
};
|
||||
(G::Scalar::ONE - r_y[0]) * self.eval_W + r_y[0] * eval_X
|
||||
};
|
||||
|
||||
// compute evaluations of R1CS matrices
|
||||
let multi_evaluate = |M_vec: &[&[(usize, usize, G::Scalar)]],
|
||||
r_x: &[G::Scalar],
|
||||
r_y: &[G::Scalar]|
|
||||
-> Vec<G::Scalar> {
|
||||
let evaluate_with_table =
|
||||
|M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar {
|
||||
(0..M.len())
|
||||
.collect::<Vec<usize>>()
|
||||
.par_iter()
|
||||
.map(|&i| {
|
||||
let (row, col, val) = M[i];
|
||||
T_x[row] * T_y[col] * val
|
||||
})
|
||||
.reduce(|| G::Scalar::ZERO, |acc, x| acc + x)
|
||||
};
|
||||
|
||||
let (T_x, T_y) = rayon::join(
|
||||
|| EqPolynomial::new(r_x.to_vec()).evals(),
|
||||
|| EqPolynomial::new(r_y.to_vec()).evals(),
|
||||
);
|
||||
|
||||
(0..M_vec.len())
|
||||
.collect::<Vec<usize>>()
|
||||
.par_iter()
|
||||
.map(|&i| evaluate_with_table(M_vec[i], &T_x, &T_y))
|
||||
.collect()
|
||||
};
|
||||
|
||||
let evals = multi_evaluate(&[&vk.S.A, &vk.S.B, &vk.S.C], &r_x, &r_y);
|
||||
|
||||
let claim_inner_final_expected = (evals[0] + r * evals[1] + r * r * evals[2]) * eval_Z;
|
||||
if claim_inner_final != claim_inner_final_expected {
|
||||
return Err(NovaError::InvalidSumcheckProof);
|
||||
}
|
||||
|
||||
// add claims about W and E polynomials
|
||||
let u_vec: Vec<PolyEvalInstance<G>> = vec![
|
||||
PolyEvalInstance {
|
||||
c: U.comm_W,
|
||||
x: r_y[1..].to_vec(),
|
||||
e: self.eval_W,
|
||||
},
|
||||
PolyEvalInstance {
|
||||
c: U.comm_E,
|
||||
x: r_x,
|
||||
e: self.eval_E,
|
||||
},
|
||||
];
|
||||
|
||||
let u_vec_padded = PolyEvalInstance::pad(&u_vec); // pad the evaluation points
|
||||
|
||||
// generate a challenge
|
||||
let rho = transcript.squeeze(b"r")?;
|
||||
let num_claims = u_vec.len();
|
||||
let powers_of_rho = powers::<G>(&rho, num_claims);
|
||||
let claim_batch_joint = u_vec
|
||||
.iter()
|
||||
.zip(powers_of_rho.iter())
|
||||
.map(|(u, p)| u.e * p)
|
||||
.sum();
|
||||
|
||||
let num_rounds_z = u_vec_padded[0].x.len();
|
||||
let (claim_batch_final, r_z) =
|
||||
self
|
||||
.sc_proof_batch
|
||||
.verify(claim_batch_joint, num_rounds_z, 2, &mut transcript)?;
|
||||
|
||||
let claim_batch_final_expected = {
|
||||
let poly_rz = EqPolynomial::new(r_z.clone());
|
||||
let evals = u_vec_padded
|
||||
.iter()
|
||||
.map(|u| poly_rz.evaluate(&u.x))
|
||||
.collect::<Vec<G::Scalar>>();
|
||||
|
||||
evals
|
||||
.iter()
|
||||
.zip(self.evals_batch.iter())
|
||||
.zip(powers_of_rho.iter())
|
||||
.map(|((e_i, p_i), rho_i)| *e_i * *p_i * rho_i)
|
||||
.sum()
|
||||
};
|
||||
|
||||
if claim_batch_final != claim_batch_final_expected {
|
||||
return Err(NovaError::InvalidSumcheckProof);
|
||||
}
|
||||
|
||||
transcript.absorb(b"l", &self.evals_batch.as_slice());
|
||||
|
||||
// we now combine evaluation claims at the same point rz into one
|
||||
let gamma = transcript.squeeze(b"g")?;
|
||||
let powers_of_gamma: Vec<G::Scalar> = powers::<G>(&gamma, num_claims);
|
||||
let comm_joint = u_vec_padded
|
||||
.iter()
|
||||
.zip(powers_of_gamma.iter())
|
||||
.map(|(u, g_i)| u.c * *g_i)
|
||||
.fold(Commitment::<G>::default(), |acc, item| acc + item);
|
||||
let eval_joint = self
|
||||
.evals_batch
|
||||
.iter()
|
||||
.zip(powers_of_gamma.iter())
|
||||
.map(|(e, g_i)| *e * *g_i)
|
||||
.sum();
|
||||
|
||||
// verify
|
||||
EE::verify(
|
||||
&vk.vk_ee,
|
||||
&mut transcript,
|
||||
&comm_joint,
|
||||
&r_z,
|
||||
&eval_joint,
|
||||
&self.eval_arg,
|
||||
)?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user