mirror of
https://github.com/arnaucube/Nova.git
synced 2026-01-11 08:31:29 +01:00
Ppsnark refactorings (#208)
* refactor: Refactor row/col vector construction for efficiency - Optimized the creation of `row` and `col` in `R1CSShapeSparkRepr::new` using map and unzip methods. - Updated `R1CSShapeSparkRepr::evaluation_oracles` to create `E_row` and `E_col` using the same logic for consistency. * refactor: Refactor and optimize `R1CSShapeSparkRepr` initialization - Updated method for zero padding in `val_B` and `val_C` using `std::iter::repeat`, to need one vector allocation instead of two - Functionality and outputs remain unchanged. * refactor: Refactor polynomial struct in SumCheck to use generic Scalar type - Updated `CompressedUniPoly` and `UniPoly` structs in `sumcheck.rs` to use the generic `Scalar` type. - Adapted all methods within these structs to accommodate the `Scalar` type instead of `G: Group` type. - Modified the type of `cubic_polys` in `ppsnark.rs` to `CompressedUniPoly<G::Scalar>`. * refactor: Eliminate most instances of resize resize in Rust may cause reallocation of the memory, which is an expensive operation. This is particularly true when the vector is resized to a larger size.
This commit is contained in:
committed by
GitHub
parent
cdab40357a
commit
eeb3e470d5
@@ -119,51 +119,34 @@ impl<G: Group> R1CSShapeSparkRepr<G> {
|
||||
max(total_nz, max(2 * S.num_vars, S.num_cons)).next_power_of_two()
|
||||
};
|
||||
|
||||
let row = {
|
||||
let mut r = S
|
||||
.A
|
||||
.iter()
|
||||
.chain(S.B.iter())
|
||||
.chain(S.C.iter())
|
||||
.map(|(r, _, _)| *r)
|
||||
.collect::<Vec<usize>>();
|
||||
r.resize(N, 0usize);
|
||||
r
|
||||
};
|
||||
let (mut row, mut col) = (vec![0usize; N], vec![0usize; N]);
|
||||
|
||||
let col = {
|
||||
let mut c = S
|
||||
.A
|
||||
.iter()
|
||||
.chain(S.B.iter())
|
||||
.chain(S.C.iter())
|
||||
.map(|(_, c, _)| *c)
|
||||
.collect::<Vec<usize>>();
|
||||
c.resize(N, 0usize);
|
||||
c
|
||||
};
|
||||
for (i, (r, c, _)) in S.A.iter().chain(S.B.iter()).chain(S.C.iter()).enumerate() {
|
||||
row[i] = *r;
|
||||
col[i] = *c;
|
||||
}
|
||||
|
||||
let val_A = {
|
||||
let mut val = S.A.iter().map(|(_, _, v)| *v).collect::<Vec<G::Scalar>>();
|
||||
val.resize(N, G::Scalar::ZERO);
|
||||
let mut val = vec![G::Scalar::ZERO; N];
|
||||
for (i, (_, _, v)) in S.A.iter().enumerate() {
|
||||
val[i] = *v;
|
||||
}
|
||||
val
|
||||
};
|
||||
|
||||
let val_B = {
|
||||
// prepend zeros
|
||||
let mut val = vec![G::Scalar::ZERO; S.A.len()];
|
||||
val.extend(S.B.iter().map(|(_, _, v)| *v).collect::<Vec<G::Scalar>>());
|
||||
// append zeros
|
||||
val.resize(N, G::Scalar::ZERO);
|
||||
let mut val = vec![G::Scalar::ZERO; N];
|
||||
for (i, (_, _, v)) in S.B.iter().enumerate() {
|
||||
val[S.A.len() + i] = *v;
|
||||
}
|
||||
val
|
||||
};
|
||||
|
||||
let val_C = {
|
||||
// prepend zeros
|
||||
let mut val = vec![G::Scalar::ZERO; S.A.len() + S.B.len()];
|
||||
val.extend(S.C.iter().map(|(_, _, v)| *v).collect::<Vec<G::Scalar>>());
|
||||
// append zeros
|
||||
val.resize(N, G::Scalar::ZERO);
|
||||
let mut val = vec![G::Scalar::ZERO; N];
|
||||
for (i, (_, _, v)) in S.C.iter().enumerate() {
|
||||
val[S.A.len() + S.B.len() + i] = *v;
|
||||
}
|
||||
val
|
||||
};
|
||||
|
||||
@@ -265,29 +248,30 @@ impl<G: Group> R1CSShapeSparkRepr<G> {
|
||||
|
||||
let mem_row = EqPolynomial::new(r_x_padded).evals();
|
||||
let mem_col = {
|
||||
let mut z = z.to_vec();
|
||||
z.resize(self.N, G::Scalar::ZERO);
|
||||
z
|
||||
let mut val = vec![G::Scalar::ZERO; self.N];
|
||||
for (i, v) in z.iter().enumerate() {
|
||||
val[i] = *v;
|
||||
}
|
||||
val
|
||||
};
|
||||
|
||||
let mut E_row = S
|
||||
let (E_row, E_col) = {
|
||||
let mut E_row = vec![mem_row[0]; self.N]; // we place mem_row[0] since resized row is appended with 0s
|
||||
let mut E_col = vec![mem_col[0]; self.N];
|
||||
|
||||
for (i, (val_r, val_c)) in S
|
||||
.A
|
||||
.iter()
|
||||
.chain(S.B.iter())
|
||||
.chain(S.C.iter())
|
||||
.map(|(r, _, _)| mem_row[*r])
|
||||
.collect::<Vec<G::Scalar>>();
|
||||
|
||||
let mut E_col = S
|
||||
.A
|
||||
.iter()
|
||||
.chain(S.B.iter())
|
||||
.chain(S.C.iter())
|
||||
.map(|(_, c, _)| mem_col[*c])
|
||||
.collect::<Vec<G::Scalar>>();
|
||||
|
||||
E_row.resize(self.N, mem_row[0]); // we place mem_row[0] since resized row is appended with 0s
|
||||
E_col.resize(self.N, mem_col[0]);
|
||||
.map(|(r, c, _)| (mem_row[*r], mem_col[*c]))
|
||||
.enumerate()
|
||||
{
|
||||
E_row[i] = val_r;
|
||||
E_col[i] = val_c;
|
||||
}
|
||||
(E_row, E_col)
|
||||
};
|
||||
|
||||
(mem_row, mem_col, E_row, E_col)
|
||||
}
|
||||
@@ -862,7 +846,7 @@ impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> RelaxedR1CSSNARK<G, EE>
|
||||
|
||||
let mut e = claim;
|
||||
let mut r: Vec<G::Scalar> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
||||
let mut cubic_polys: Vec<CompressedUniPoly<G::Scalar>> = Vec::new();
|
||||
let num_rounds = mem.size().log_2();
|
||||
for _i in 0..num_rounds {
|
||||
let mut evals: Vec<Vec<G::Scalar>> = Vec::new();
|
||||
@@ -999,8 +983,13 @@ impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> RelaxedR1CSSNARKTrait<G
|
||||
Bz.resize(pk.S_repr.N, G::Scalar::ZERO);
|
||||
Cz.resize(pk.S_repr.N, G::Scalar::ZERO);
|
||||
|
||||
let mut E = W.E.clone();
|
||||
E.resize(pk.S_repr.N, G::Scalar::ZERO);
|
||||
let E = {
|
||||
let mut val = vec![G::Scalar::ZERO; pk.S_repr.N];
|
||||
for (i, w_e) in W.E.iter().enumerate() {
|
||||
val[i] = *w_e;
|
||||
}
|
||||
val
|
||||
};
|
||||
|
||||
(Az, Bz, Cz, E)
|
||||
};
|
||||
|
||||
@@ -3,19 +3,18 @@
|
||||
use super::polynomial::MultilinearPolynomial;
|
||||
use crate::errors::NovaError;
|
||||
use crate::traits::{Group, TranscriptEngineTrait, TranscriptReprTrait};
|
||||
use core::marker::PhantomData;
|
||||
use ff::Field;
|
||||
use ff::{Field, PrimeField};
|
||||
use rayon::prelude::*;
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
#[serde(bound = "")]
|
||||
pub(crate) struct SumcheckProof<G: Group> {
|
||||
compressed_polys: Vec<CompressedUniPoly<G>>,
|
||||
compressed_polys: Vec<CompressedUniPoly<G::Scalar>>,
|
||||
}
|
||||
|
||||
impl<G: Group> SumcheckProof<G> {
|
||||
pub fn new(compressed_polys: Vec<CompressedUniPoly<G>>) -> Self {
|
||||
pub fn new(compressed_polys: Vec<CompressedUniPoly<G::Scalar>>) -> Self {
|
||||
Self { compressed_polys }
|
||||
}
|
||||
|
||||
@@ -101,7 +100,7 @@ impl<G: Group> SumcheckProof<G> {
|
||||
F: Fn(&G::Scalar, &G::Scalar) -> G::Scalar + Sync,
|
||||
{
|
||||
let mut r: Vec<G::Scalar> = Vec::new();
|
||||
let mut polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
||||
let mut polys: Vec<CompressedUniPoly<G::Scalar>> = Vec::new();
|
||||
let mut claim_per_round = *claim;
|
||||
for _ in 0..num_rounds {
|
||||
let poly = {
|
||||
@@ -150,7 +149,7 @@ impl<G: Group> SumcheckProof<G> {
|
||||
{
|
||||
let mut e = *claim;
|
||||
let mut r: Vec<G::Scalar> = Vec::new();
|
||||
let mut quad_polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
||||
let mut quad_polys: Vec<CompressedUniPoly<G::Scalar>> = Vec::new();
|
||||
|
||||
for _j in 0..num_rounds {
|
||||
let mut evals: Vec<(G::Scalar, G::Scalar)> = Vec::new();
|
||||
@@ -204,7 +203,7 @@ impl<G: Group> SumcheckProof<G> {
|
||||
F: Fn(&G::Scalar, &G::Scalar, &G::Scalar, &G::Scalar) -> G::Scalar + Sync,
|
||||
{
|
||||
let mut r: Vec<G::Scalar> = Vec::new();
|
||||
let mut polys: Vec<CompressedUniPoly<G>> = Vec::new();
|
||||
let mut polys: Vec<CompressedUniPoly<G::Scalar>> = Vec::new();
|
||||
let mut claim_per_round = *claim;
|
||||
|
||||
for _ in 0..num_rounds {
|
||||
@@ -288,25 +287,24 @@ impl<G: Group> SumcheckProof<G> {
|
||||
// ax^2 + bx + c stored as vec![a,b,c]
|
||||
// ax^3 + bx^2 + cx + d stored as vec![a,b,c,d]
|
||||
#[derive(Debug)]
|
||||
pub struct UniPoly<G: Group> {
|
||||
coeffs: Vec<G::Scalar>,
|
||||
pub struct UniPoly<Scalar: PrimeField> {
|
||||
coeffs: Vec<Scalar>,
|
||||
}
|
||||
|
||||
// ax^2 + bx + c stored as vec![a,c]
|
||||
// ax^3 + bx^2 + cx + d stored as vec![a,c,d]
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct CompressedUniPoly<G: Group> {
|
||||
coeffs_except_linear_term: Vec<G::Scalar>,
|
||||
_p: PhantomData<G>,
|
||||
pub struct CompressedUniPoly<Scalar: PrimeField> {
|
||||
coeffs_except_linear_term: Vec<Scalar>,
|
||||
}
|
||||
|
||||
impl<G: Group> UniPoly<G> {
|
||||
pub fn from_evals(evals: &[G::Scalar]) -> Self {
|
||||
impl<Scalar: PrimeField> UniPoly<Scalar> {
|
||||
pub fn from_evals(evals: &[Scalar]) -> Self {
|
||||
// we only support degree-2 or degree-3 univariate polynomials
|
||||
assert!(evals.len() == 3 || evals.len() == 4);
|
||||
let coeffs = if evals.len() == 3 {
|
||||
// ax^2 + bx + c
|
||||
let two_inv = G::Scalar::from(2).invert().unwrap();
|
||||
let two_inv = Scalar::from(2).invert().unwrap();
|
||||
|
||||
let c = evals[0];
|
||||
let a = two_inv * (evals[2] - evals[1] - evals[1] + c);
|
||||
@@ -314,8 +312,8 @@ impl<G: Group> UniPoly<G> {
|
||||
vec![c, b, a]
|
||||
} else {
|
||||
// ax^3 + bx^2 + cx + d
|
||||
let two_inv = G::Scalar::from(2).invert().unwrap();
|
||||
let six_inv = G::Scalar::from(6).invert().unwrap();
|
||||
let two_inv = Scalar::from(2).invert().unwrap();
|
||||
let six_inv = Scalar::from(6).invert().unwrap();
|
||||
|
||||
let d = evals[0];
|
||||
let a = six_inv
|
||||
@@ -338,18 +336,18 @@ impl<G: Group> UniPoly<G> {
|
||||
self.coeffs.len() - 1
|
||||
}
|
||||
|
||||
pub fn eval_at_zero(&self) -> G::Scalar {
|
||||
pub fn eval_at_zero(&self) -> Scalar {
|
||||
self.coeffs[0]
|
||||
}
|
||||
|
||||
pub fn eval_at_one(&self) -> G::Scalar {
|
||||
pub fn eval_at_one(&self) -> Scalar {
|
||||
(0..self.coeffs.len())
|
||||
.into_par_iter()
|
||||
.map(|i| self.coeffs[i])
|
||||
.reduce(|| G::Scalar::ZERO, |a, b| a + b)
|
||||
.reduce(|| Scalar::ZERO, |a, b| a + b)
|
||||
}
|
||||
|
||||
pub fn evaluate(&self, r: &G::Scalar) -> G::Scalar {
|
||||
pub fn evaluate(&self, r: &Scalar) -> Scalar {
|
||||
let mut eval = self.coeffs[0];
|
||||
let mut power = *r;
|
||||
for coeff in self.coeffs.iter().skip(1) {
|
||||
@@ -359,27 +357,26 @@ impl<G: Group> UniPoly<G> {
|
||||
eval
|
||||
}
|
||||
|
||||
pub fn compress(&self) -> CompressedUniPoly<G> {
|
||||
pub fn compress(&self) -> CompressedUniPoly<Scalar> {
|
||||
let coeffs_except_linear_term = [&self.coeffs[0..1], &self.coeffs[2..]].concat();
|
||||
assert_eq!(coeffs_except_linear_term.len() + 1, self.coeffs.len());
|
||||
CompressedUniPoly {
|
||||
coeffs_except_linear_term,
|
||||
_p: Default::default(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: Group> CompressedUniPoly<G> {
|
||||
impl<Scalar: PrimeField> CompressedUniPoly<Scalar> {
|
||||
// we require eval(0) + eval(1) = hint, so we can solve for the linear term as:
|
||||
// linear_term = hint - 2 * constant_term - deg2 term - deg3 term
|
||||
pub fn decompress(&self, hint: &G::Scalar) -> UniPoly<G> {
|
||||
pub fn decompress(&self, hint: &Scalar) -> UniPoly<Scalar> {
|
||||
let mut linear_term =
|
||||
*hint - self.coeffs_except_linear_term[0] - self.coeffs_except_linear_term[0];
|
||||
for i in 1..self.coeffs_except_linear_term.len() {
|
||||
linear_term -= self.coeffs_except_linear_term[i];
|
||||
}
|
||||
|
||||
let mut coeffs: Vec<G::Scalar> = Vec::new();
|
||||
let mut coeffs: Vec<Scalar> = Vec::new();
|
||||
coeffs.push(self.coeffs_except_linear_term[0]);
|
||||
coeffs.push(linear_term);
|
||||
coeffs.extend(&self.coeffs_except_linear_term[1..]);
|
||||
@@ -388,7 +385,7 @@ impl<G: Group> CompressedUniPoly<G> {
|
||||
}
|
||||
}
|
||||
|
||||
impl<G: Group> TranscriptReprTrait<G> for UniPoly<G> {
|
||||
impl<G: Group> TranscriptReprTrait<G> for UniPoly<G::Scalar> {
|
||||
fn to_transcript_bytes(&self) -> Vec<u8> {
|
||||
let coeffs = self.compress().coeffs_except_linear_term;
|
||||
coeffs.as_slice().to_transcript_bytes()
|
||||
|
||||
Reference in New Issue
Block a user