//! Demonstrates how to use Nova to produce a recursive proof of the correct execution of //! iterations of the MinRoot function, thereby realizing a Nova-based verifiable delay function (VDF). //! We execute a configurable number of iterations of the MinRoot function per step of Nova's recursion. type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError}; use ff::PrimeField; use flate2::{write::ZlibEncoder, Compression}; use nova_snark::{ traits::{ circuit::{StepCircuit, TrivialTestCircuit}, Group, }, CompressedSNARK, PublicParams, RecursiveSNARK, }; use num_bigint::BigUint; use std::time::Instant; #[derive(Clone, Debug)] struct MinRootIteration<F: PrimeField> { x_i: F, y_i: F, x_i_plus_1: F, y_i_plus_1: F, } impl<F: PrimeField> MinRootIteration<F> { // produces a sample non-deterministic advice, executing one invocation of MinRoot per step fn new(num_iters: usize, x_0: &F, y_0: &F) -> (Vec<F>, Vec<Self>) { // although this code is written generically, it is tailored to Pallas' scalar field // (p - 3 / 5) let exp = BigUint::parse_bytes( b"23158417847463239084714197001737581570690445185553317903743794198714690358477", 10, ) .unwrap(); let mut res = Vec::new(); let mut x_i = *x_0; let mut y_i = *y_0; for _i in 0..num_iters { let x_i_plus_1 = (x_i + y_i).pow_vartime(exp.to_u64_digits()); // computes the fifth root of x_i + y_i // sanity check let sq = x_i_plus_1 * x_i_plus_1; let quad = sq * sq; let fifth = quad * x_i_plus_1; debug_assert_eq!(fifth, x_i + y_i); let y_i_plus_1 = x_i; res.push(Self { x_i, y_i, x_i_plus_1, y_i_plus_1, }); x_i = x_i_plus_1; y_i = y_i_plus_1; } let z0 = vec![*x_0, *y_0]; (z0, res) } } #[derive(Clone, Debug)] struct MinRootCircuit<F: PrimeField> { seq: Vec<MinRootIteration<F>>, } impl<F> StepCircuit<F> for MinRootCircuit<F> where F: PrimeField, { fn arity(&self) -> usize { 2 } fn synthesize<CS: ConstraintSystem<F>>( &self, cs: &mut CS, z: &[AllocatedNum<F>], ) -> Result<Vec<AllocatedNum<F>>, SynthesisError> { let mut z_out: Result<Vec<AllocatedNum<F>>, SynthesisError> = Err(SynthesisError::AssignmentMissing); // use the provided inputs let x_0 = z[0].clone(); let y_0 = z[1].clone(); // variables to hold running x_i and y_i let mut x_i = x_0; let mut y_i = y_0; for i in 0..self.seq.len() { // non deterministic advice let x_i_plus_1 = AllocatedNum::alloc(cs.namespace(|| format!("x_i_plus_1_iter_{i}")), || { Ok(self.seq[i].x_i_plus_1) })?; // check the following conditions hold: // (i) x_i_plus_1 = (x_i + y_i)^{1/5}, which can be more easily checked with x_i_plus_1^5 = x_i + y_i // (ii) y_i_plus_1 = x_i // (1) constraints for condition (i) are below // (2) constraints for condition (ii) is avoided because we just used x_i wherever y_i_plus_1 is used let x_i_plus_1_sq = x_i_plus_1.square(cs.namespace(|| format!("x_i_plus_1_sq_iter_{i}")))?; let x_i_plus_1_quad = x_i_plus_1_sq.square(cs.namespace(|| format!("x_i_plus_1_quad_{i}")))?; cs.enforce( || format!("x_i_plus_1_quad * x_i_plus_1 = x_i + y_i_iter_{i}"), |lc| lc + x_i_plus_1_quad.get_variable(), |lc| lc + x_i_plus_1.get_variable(), |lc| lc + x_i.get_variable() + y_i.get_variable(), ); if i == self.seq.len() - 1 { z_out = Ok(vec![x_i_plus_1.clone(), x_i.clone()]); } // update x_i and y_i for the next iteration y_i = x_i; x_i = x_i_plus_1; } z_out } fn output(&self, z: &[F]) -> Vec<F> { // sanity check debug_assert_eq!(z[0], self.seq[0].x_i); debug_assert_eq!(z[1], self.seq[0].y_i); // compute output using advice vec![ self.seq[self.seq.len() - 1].x_i_plus_1, self.seq[self.seq.len() - 1].y_i_plus_1, ] } } fn main() { println!("Nova-based VDF with MinRoot delay function"); println!("========================================================="); let num_steps = 10; for num_iters_per_step in [1024, 2048, 4096, 8192, 16384, 32768, 65535] { // number of iterations of MinRoot per Nova's recursive step let circuit_primary = MinRootCircuit { seq: vec![ MinRootIteration { x_i: <G1 as Group>::Scalar::zero(), y_i: <G1 as Group>::Scalar::zero(), x_i_plus_1: <G1 as Group>::Scalar::zero(), y_i_plus_1: <G1 as Group>::Scalar::zero(), }; num_iters_per_step ], }; let circuit_secondary = TrivialTestCircuit::default(); println!("Proving {num_iters_per_step} iterations of MinRoot per step"); // produce public parameters let start = Instant::now(); println!("Producing public parameters..."); let pp = PublicParams::< G1, G2, MinRootCircuit<<G1 as Group>::Scalar>, TrivialTestCircuit<<G2 as Group>::Scalar>, >::setup(circuit_primary, circuit_secondary.clone()); println!("PublicParams::setup, took {:?} ", start.elapsed()); println!( "Number of constraints per step (primary circuit): {}", pp.num_constraints().0 ); println!( "Number of constraints per step (secondary circuit): {}", pp.num_constraints().1 ); println!( "Number of variables per step (primary circuit): {}", pp.num_variables().0 ); println!( "Number of variables per step (secondary circuit): {}", pp.num_variables().1 ); // produce non-deterministic advice let (z0_primary, minroot_iterations) = MinRootIteration::new( num_iters_per_step * num_steps, &<G1 as Group>::Scalar::zero(), &<G1 as Group>::Scalar::one(), ); let minroot_circuits = (0..num_steps) .map(|i| MinRootCircuit { seq: (0..num_iters_per_step) .map(|j| MinRootIteration { x_i: minroot_iterations[i * num_iters_per_step + j].x_i, y_i: minroot_iterations[i * num_iters_per_step + j].y_i, x_i_plus_1: minroot_iterations[i * num_iters_per_step + j].x_i_plus_1, y_i_plus_1: minroot_iterations[i * num_iters_per_step + j].y_i_plus_1, }) .collect::<Vec<_>>(), }) .collect::<Vec<_>>(); let z0_secondary = vec![<G2 as Group>::Scalar::zero()]; type C1 = MinRootCircuit<<G1 as Group>::Scalar>; type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>; // produce a recursive SNARK println!("Generating a RecursiveSNARK..."); let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None; for (i, circuit_primary) in minroot_circuits.iter().take(num_steps).enumerate() { let start = Instant::now(); let res = RecursiveSNARK::prove_step( &pp, recursive_snark, circuit_primary.clone(), circuit_secondary.clone(), z0_primary.clone(), z0_secondary.clone(), ); assert!(res.is_ok()); println!( "RecursiveSNARK::prove_step {}: {:?}, took {:?} ", i, res.is_ok(), start.elapsed() ); recursive_snark = Some(res.unwrap()); } assert!(recursive_snark.is_some()); let recursive_snark = recursive_snark.unwrap(); // verify the recursive SNARK println!("Verifying a RecursiveSNARK..."); let start = Instant::now(); let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone()); println!( "RecursiveSNARK::verify: {:?}, took {:?}", res.is_ok(), start.elapsed() ); assert!(res.is_ok()); // produce a compressed SNARK println!("Generating a CompressedSNARK using Spartan with IPA-PC..."); let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp); let start = Instant::now(); type EE1 = nova_snark::provider::ipa_pc::EvaluationEngine<G1>; type EE2 = nova_snark::provider::ipa_pc::EvaluationEngine<G2>; type S1 = nova_snark::spartan::RelaxedR1CSSNARK<G1, EE1>; type S2 = nova_snark::spartan::RelaxedR1CSSNARK<G2, EE2>; let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark); println!( "CompressedSNARK::prove: {:?}, took {:?}", res.is_ok(), start.elapsed() ); assert!(res.is_ok()); let compressed_snark = res.unwrap(); let mut encoder = ZlibEncoder::new(Vec::new(), Compression::default()); bincode::serialize_into(&mut encoder, &compressed_snark).unwrap(); let compressed_snark_encoded = encoder.finish().unwrap(); println!( "CompressedSNARK::len {:?} bytes", compressed_snark_encoded.len() ); // verify the compressed SNARK println!("Verifying a CompressedSNARK..."); let start = Instant::now(); let res = compressed_snark.verify(&vk, num_steps, z0_primary, z0_secondary); println!( "CompressedSNARK::verify: {:?}, took {:?}", res.is_ok(), start.elapsed() ); assert!(res.is_ok()); println!("========================================================="); } }