#![allow(non_snake_case)] use bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError}; use core::marker::PhantomData; use criterion::*; use ff::PrimeField; use nova_snark::{ traits::{ circuit::{StepCircuit, TrivialTestCircuit}, Group, }, PublicParams, RecursiveSNARK, }; use std::time::Duration; type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; type C1 = NonTrivialTestCircuit<::Scalar>; type C2 = TrivialTestCircuit<::Scalar>; criterion_group! { name = recursive_snark; config = Criterion::default().warm_up_time(Duration::from_millis(3000)); targets = bench_recursive_snark } criterion_main!(recursive_snark); fn bench_recursive_snark(c: &mut Criterion) { // we vary the number of constraints in the step circuit for &log_num_cons_in_step_circuit in [0, 14, 15, 16, 17, 18, 19, 20].iter() { let num_cons = 1 << log_num_cons_in_step_circuit; let mut group = c.benchmark_group(format!("RecursiveSNARK-StepCircuitSize-{}", num_cons)); group.sample_size(10); // Produce public parameters let pp = PublicParams::::setup( NonTrivialTestCircuit::new(num_cons), TrivialTestCircuit::default(), ); // Bench time to produce a recursive SNARK; // we execute a certain number of warm-up steps since executing // the first step is cheaper than other steps owing to the presence of // a lot of zeros in the satisfying assignment let num_warmup_steps = 10; let mut recursive_snark: Option> = None; for i in 0..num_warmup_steps { let res = RecursiveSNARK::prove_step( &pp, recursive_snark, NonTrivialTestCircuit::new(num_cons), TrivialTestCircuit::default(), ::Scalar::one(), ::Scalar::one(), ); assert!(res.is_ok()); let recursive_snark_unwrapped = res.unwrap(); // verify the recursive snark at each step of recursion let res = recursive_snark_unwrapped.verify( &pp, i + 1, ::Scalar::one(), ::Scalar::one(), ); assert!(res.is_ok()); // set the running variable for the next iteration recursive_snark = Some(recursive_snark_unwrapped); } group.bench_function("Prove", |b| { b.iter(|| { // produce a recursive SNARK for a step of the recursion assert!(RecursiveSNARK::prove_step( black_box(&pp), black_box(recursive_snark.clone()), black_box(NonTrivialTestCircuit::new(num_cons)), black_box(TrivialTestCircuit::default()), black_box(::Scalar::one()), black_box(::Scalar::one()), ) .is_ok()); }) }); let recursive_snark = recursive_snark.unwrap(); // Benchmark the verification time group.bench_function("Verify", |b| { b.iter(|| { assert!(black_box(&recursive_snark) .verify( black_box(&pp), black_box(num_warmup_steps), black_box(::Scalar::one()), black_box(::Scalar::one()), ) .is_ok()); }); }); group.finish(); } } #[derive(Clone, Debug, Default)] struct NonTrivialTestCircuit { num_cons: usize, _p: PhantomData, } impl NonTrivialTestCircuit where F: PrimeField, { pub fn new(num_cons: usize) -> Self { Self { num_cons, _p: Default::default(), } } } impl StepCircuit for NonTrivialTestCircuit where F: PrimeField, { fn synthesize>( &self, cs: &mut CS, z: AllocatedNum, ) -> Result, SynthesisError> { // Consider a an equation: `x^2 = y`, where `x` and `y` are respectively the input and output. let mut x = z; let mut y = x.clone(); for i in 0..self.num_cons { y = x.square(cs.namespace(|| format!("x_sq_{}", i)))?; x = y.clone(); } Ok(y) } fn compute(&self, z: &F) -> F { let mut x = *z; let mut y = x; for _i in 0..self.num_cons { y = x * x; x = y; } y } }