//! Demonstrates how to use Nova to produce a recursive proof of the correct execution of //! iterations of the MinRoot function, thereby realizing a Nova-based verifiable delay function (VDF). //! We execute a configurable number of iterations of the MinRoot function per step of Nova's recursion. type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError}; use ff::PrimeField; use generic_array::typenum::U2; use neptune::{ circuit::poseidon_hash, poseidon::{Poseidon, PoseidonConstants}, Strength, }; use nova_snark::{ traits::{Group, StepCircuit}, CompressedSNARK, PublicParams, RecursiveSNARK, }; use num_bigint::BigUint; use std::marker::PhantomData; use std::time::Instant; #[derive(Clone, Debug)] struct MinRootIteration { x_i: F, y_i: F, x_i_plus_1: F, y_i_plus_1: F, } impl MinRootIteration { // produces a sample non-deterministic advice, executing one invocation of MinRoot per step fn new(num_iters: usize, x_0: &F, y_0: &F, pc: &PoseidonConstants) -> (F, Vec) { // although this code is written generically, it is tailored to Pallas' scalar field // (p - 3 / 5) let exp = BigUint::parse_bytes( b"23158417847463239084714197001737581570690445185553317903743794198714690358477", 10, ) .unwrap(); let mut res = Vec::new(); let mut x_i = *x_0; let mut y_i = *y_0; for _i in 0..num_iters { let x_i_plus_1 = (x_i + y_i).pow_vartime(exp.to_u64_digits()); // computes the fifth root of x_i + y_i // sanity check let sq = x_i_plus_1 * x_i_plus_1; let quad = sq * sq; let fifth = quad * x_i_plus_1; debug_assert_eq!(fifth, x_i + y_i); let y_i_plus_1 = x_i; res.push(Self { x_i, y_i, x_i_plus_1, y_i_plus_1, }); x_i = x_i_plus_1; y_i = y_i_plus_1; } let z0 = Poseidon::::new_with_preimage(&[*x_0, *y_0], pc).hash(); (z0, res) } } #[derive(Clone, Debug)] struct MinRootCircuit { seq: Vec>, pc: PoseidonConstants, } impl StepCircuit for MinRootCircuit where F: PrimeField, { fn synthesize>( &self, cs: &mut CS, z: AllocatedNum, ) -> Result, SynthesisError> { let mut z_out: Result, SynthesisError> = Err(SynthesisError::AssignmentMissing); for i in 0..self.seq.len() { // Allocate four variables for holding non-deterministic advice: x_i, y_i, x_i_plus_1, y_i_plus_1 let x_i = AllocatedNum::alloc(cs.namespace(|| format!("x_i_iter_{}", i)), || { Ok(self.seq[i].x_i) })?; let y_i = AllocatedNum::alloc(cs.namespace(|| format!("y_i_iter_{}", i)), || { Ok(self.seq[i].y_i) })?; let x_i_plus_1 = AllocatedNum::alloc(cs.namespace(|| format!("x_i_plus_1_iter_{}", i)), || { Ok(self.seq[i].x_i_plus_1) })?; // check that z = hash(x_i, y_i), where z is an output from the prior step if i == 0 { let z_hash = poseidon_hash( cs.namespace(|| "input hash"), vec![x_i.clone(), y_i.clone()], &self.pc, )?; cs.enforce( || "z =? z_hash", |lc| lc + z_hash.get_variable(), |lc| lc + CS::one(), |lc| lc + z.get_variable(), ); } // check the following conditions hold: // (i) x_i_plus_1 = (x_i + y_i)^{1/5}, which can be more easily checked with x_i_plus_1^5 = x_i + y_i // (ii) y_i_plus_1 = x_i // (1) constraints for condition (i) are below // (2) constraints for condition (ii) is avoided because we just used x_i wherever y_i_plus_1 is used let x_i_plus_1_sq = x_i_plus_1.square(cs.namespace(|| format!("x_i_plus_1_sq_iter_{}", i)))?; let x_i_plus_1_quad = x_i_plus_1_sq.square(cs.namespace(|| format!("x_i_plus_1_quad_{}", i)))?; let x_i_plus_1_pow_5 = x_i_plus_1_quad.mul( cs.namespace(|| format!("x_i_plus_1_pow_5_{}", i)), &x_i_plus_1, )?; cs.enforce( || format!("x_i_plus_1_pow_5 = x_i + y_i_iter_{}", i), |lc| lc + x_i_plus_1_pow_5.get_variable(), |lc| lc + CS::one(), |lc| lc + x_i.get_variable() + y_i.get_variable(), ); // return hash(x_i_plus_1, y_i_plus_1) since Nova circuits expect a single output if i == self.seq.len() - 1 { z_out = poseidon_hash( cs.namespace(|| "output hash"), vec![x_i_plus_1, x_i.clone()], &self.pc, ); } } z_out } fn compute(&self, z: &F) -> F { // sanity check let z_hash = Poseidon::::new_with_preimage(&[self.seq[0].x_i, self.seq[0].y_i], &self.pc).hash(); debug_assert_eq!(z, &z_hash); // compute output hash using advice let iters = self.seq.len(); Poseidon::::new_with_preimage( &[ self.seq[iters - 1].x_i_plus_1, self.seq[iters - 1].y_i_plus_1, ], &self.pc, ) .hash() } } fn main() { let num_steps = 10; let num_iters_per_step = 10; // number of iterations of MinRoot per Nova's recursive step let pc = PoseidonConstants::<::Scalar, U2>::new_with_strength(Strength::Standard); let circuit_primary = MinRootCircuit { seq: vec![ MinRootIteration { x_i: ::Scalar::zero(), y_i: ::Scalar::zero(), x_i_plus_1: ::Scalar::zero(), y_i_plus_1: ::Scalar::zero(), }; num_iters_per_step ], pc: pc.clone(), }; let circuit_secondary = TrivialTestCircuit { _p: Default::default(), }; println!("Nova-based VDF with MinRoot delay function"); println!("=========================================="); println!( "Proving {} iterations of MinRoot per step", num_iters_per_step ); // produce public parameters println!("Producing public parameters..."); let pp = PublicParams::< G1, G2, MinRootCircuit<::Scalar>, TrivialTestCircuit<::Scalar>, >::setup(circuit_primary, circuit_secondary.clone()); println!( "Number of constraints per step (primary circuit): {}", pp.num_constraints().0 ); println!( "Number of constraints per step (secondary circuit): {}", pp.num_constraints().1 ); // produce non-deterministic advice let (z0_primary, minroot_iterations) = MinRootIteration::new( num_iters_per_step * num_steps, &::Scalar::zero(), &::Scalar::one(), &pc, ); let minroot_circuits = (0..num_steps) .map(|i| MinRootCircuit { seq: (0..num_iters_per_step) .map(|j| MinRootIteration { x_i: minroot_iterations[i * num_iters_per_step + j].x_i, y_i: minroot_iterations[i * num_iters_per_step + j].y_i, x_i_plus_1: minroot_iterations[i * num_iters_per_step + j].x_i_plus_1, y_i_plus_1: minroot_iterations[i * num_iters_per_step + j].y_i_plus_1, }) .collect::>(), pc: pc.clone(), }) .collect::>(); let z0_secondary = ::Scalar::zero(); type C1 = MinRootCircuit<::Scalar>; type C2 = TrivialTestCircuit<::Scalar>; // produce a recursive SNARK println!("Generating a RecursiveSNARK..."); let mut recursive_snark: Option> = None; for (i, circuit_primary) in minroot_circuits.iter().take(num_steps).enumerate() { let start = Instant::now(); let res = RecursiveSNARK::prove_step( &pp, recursive_snark, circuit_primary.clone(), circuit_secondary.clone(), z0_primary, z0_secondary, ); assert!(res.is_ok()); println!( "RecursiveSNARK::prove_step {}: {:?}, took {:?} ", i, res.is_ok(), start.elapsed() ); recursive_snark = Some(res.unwrap()); } assert!(recursive_snark.is_some()); let recursive_snark = recursive_snark.unwrap(); // verify the recursive SNARK println!("Verifying a RecursiveSNARK..."); let start = Instant::now(); let res = recursive_snark.verify(&pp, num_steps, z0_primary, z0_secondary); println!( "RecursiveSNARK::verify: {:?}, took {:?}", res.is_ok(), start.elapsed() ); assert!(res.is_ok()); // produce a compressed SNARK println!("Generating a CompressedSNARK using Spartan with IPA-PC..."); let start = Instant::now(); type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK; type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK; let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark); println!( "CompressedSNARK::prove: {:?}, took {:?}", res.is_ok(), start.elapsed() ); assert!(res.is_ok()); let compressed_snark = res.unwrap(); // verify the compressed SNARK println!("Verifying a CompressedSNARK..."); let start = Instant::now(); let res = compressed_snark.verify(&pp, num_steps, z0_primary, z0_secondary); println!( "CompressedSNARK::verify: {:?}, took {:?}", res.is_ok(), start.elapsed() ); assert!(res.is_ok()); } // A trivial test circuit that we use on the secondary curve #[derive(Clone, Debug)] struct TrivialTestCircuit { _p: PhantomData, } impl StepCircuit for TrivialTestCircuit where F: PrimeField, { fn synthesize>( &self, _cs: &mut CS, z: AllocatedNum, ) -> Result, SynthesisError> { Ok(z) } fn compute(&self, z: &F) -> F { *z } }