//! Benchmarks Nova's prover for proving SHA-256 with varying sized messages. //! We run a single step with the step performing the entire computation. //! This code invokes a hand-written SHA-256 gadget from bellman/bellperson. //! It also uses code from bellman/bellperson to compare circuit-generated digest with sha2 crate's output #![allow(non_snake_case)] type G1 = pasta_curves::pallas::Point; type G2 = pasta_curves::vesta::Point; use ::bellperson::{ gadgets::{ boolean::{AllocatedBit, Boolean}, num::{AllocatedNum, Num}, sha256::sha256, Assignment, }, ConstraintSystem, SynthesisError, }; use core::time::Duration; use criterion::*; use ff::{PrimeField, PrimeFieldBits}; use nova_snark::{ traits::{ circuit::{StepCircuit, TrivialTestCircuit}, Group, }, PublicParams, RecursiveSNARK, }; use sha2::{Digest, Sha256}; #[derive(Clone, Debug)] struct Sha256Circuit { preimage: Vec, digest: Scalar, } impl StepCircuit for Sha256Circuit { fn arity(&self) -> usize { 1 } fn synthesize>( &self, cs: &mut CS, _z: &[AllocatedNum], ) -> Result>, SynthesisError> { let mut z_out: Vec> = Vec::new(); let bit_values: Vec<_> = self .preimage .clone() .into_iter() .flat_map(|byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8)) .map(Some) .collect(); assert_eq!(bit_values.len(), self.preimage.len() * 8); let preimage_bits = bit_values .into_iter() .enumerate() .map(|(i, b)| AllocatedBit::alloc(cs.namespace(|| format!("preimage bit {i}")), b)) .map(|b| b.map(Boolean::from)) .collect::, _>>()?; let hash_bits = sha256(cs.namespace(|| "sha256"), &preimage_bits)?; for (i, hash_bits) in hash_bits.chunks(256_usize).enumerate() { let mut num = Num::::zero(); let mut coeff = Scalar::ONE; for bit in hash_bits { num = num.add_bool_with_coeff(CS::one(), bit, coeff); coeff = coeff.double(); } let hash = AllocatedNum::alloc(cs.namespace(|| format!("input {i}")), || { Ok(*num.get_value().get()?) })?; // num * 1 = hash cs.enforce( || format!("packing constraint {i}"), |_| num.lc(Scalar::ONE), |lc| lc + CS::one(), |lc| lc + hash.get_variable(), ); z_out.push(hash); } // sanity check with the hasher let mut hasher = Sha256::new(); hasher.update(&self.preimage); let hash_result = hasher.finalize(); let mut s = hash_result .iter() .flat_map(|&byte| (0..8).rev().map(move |i| (byte >> i) & 1u8 == 1u8)); for b in hash_bits { match b { Boolean::Is(b) => { assert!(s.next().unwrap() == b.get_value().unwrap()); } Boolean::Not(b) => { assert!(s.next().unwrap() != b.get_value().unwrap()); } Boolean::Constant(_b) => { panic!("Can't reach here") } } } Ok(z_out) } fn output(&self, _z: &[Scalar]) -> Vec { vec![self.digest] } } type C1 = Sha256Circuit<::Scalar>; type C2 = TrivialTestCircuit<::Scalar>; criterion_group! { name = recursive_snark; config = Criterion::default().warm_up_time(Duration::from_millis(3000)); targets = bench_recursive_snark } criterion_main!(recursive_snark); fn bench_recursive_snark(c: &mut Criterion) { let bytes_to_scalar = |bytes: [u8; 32]| -> ::Scalar { let mut bytes_le = bytes; bytes_le.reverse(); ::Scalar::from_repr(bytes_le).unwrap() }; let decode_hex = |s: &str| -> ::Scalar { let bytes = (0..s.len()) .step_by(2) .map(|i| u8::from_str_radix(&s[i..i + 2], 16)) .collect::, _>>() .unwrap(); let bytes_arr: [u8; 32] = bytes.try_into().unwrap(); bytes_to_scalar(bytes_arr) }; // Test vectors let circuits = vec![ Sha256Circuit { preimage: vec![0u8; 64], digest: decode_hex("12df9ae4958c1957170f9b04c4bc00c27315c5d75a391f4b672f952842bfa5ac"), }, Sha256Circuit { preimage: vec![0u8; 128], digest: decode_hex("13abfac9782cb9c13c4508bde596f1914fe2f744f6a661c0c9a16659745c4e1b"), }, Sha256Circuit { preimage: vec![0u8; 256], digest: decode_hex("0f5a007b5aef126a58f9bbd937842967c44253e7f97d98b5cd10bfe44d6782c8"), }, Sha256Circuit { preimage: vec![0u8; 512], digest: decode_hex("06a6cfaad91d49366f18443cd4e11576ff27c174bb9fe2bc54735a79e3e456e0"), }, Sha256Circuit { preimage: vec![0u8; 1024], digest: decode_hex("3763c73508f5fbb36daae8257d6c5c07db08ec5df0549ccf692b9fa218fd0ef7"), }, Sha256Circuit { preimage: vec![0u8; 2048], digest: decode_hex("35c18d6c3cf49e42b3ffcb54ea04bdc16617efba0e673abc8c858257955005a5"), }, Sha256Circuit { preimage: vec![0u8; 4096], digest: decode_hex("25349112d1bd5ba15e3e2d3effa01af1da02c097ce6208cdf28f34b74d35feb2"), }, Sha256Circuit { preimage: vec![0u8; 8192], digest: decode_hex("22bc891155c7d423039a2206ed4a5342755948baeb13a54b61dbead7c3d3b8f6"), }, Sha256Circuit { preimage: vec![0u8; 16384], digest: decode_hex("3fda713dc72ddcd42ce625c75f7e41d526d30647278a3dfcda95904e59ade7f1"), }, Sha256Circuit { preimage: vec![0u8; 32768], digest: decode_hex("1e2091bd3e3cedffebb7316b52414fff82511cbd232561874a4ae11ae2040ac1"), }, Sha256Circuit { preimage: vec![0u8; 65536], digest: decode_hex("0c33953975c438ce357912f27b0fbcf98bae6eb68a1a913386672ee406a4f479"), }, ]; for circuit_primary in circuits { let mut group = c.benchmark_group(format!( "NovaProve-Sha256-message-len-{}", circuit_primary.preimage.len() )); group.sample_size(10); // Produce public parameters let pp = PublicParams::::setup(circuit_primary.clone(), TrivialTestCircuit::default()); let circuit_secondary = TrivialTestCircuit::default(); let z0_primary = vec![::Scalar::from(2u64)]; let z0_secondary = vec![::Scalar::from(2u64)]; group.bench_function("Prove", |b| { b.iter(|| { let mut recursive_snark = RecursiveSNARK::new( black_box(&pp), black_box(&circuit_primary), black_box(&circuit_secondary), black_box(z0_primary.clone()), black_box(z0_secondary.clone()), ); // produce a recursive SNARK for a step of the recursion assert!(recursive_snark .prove_step( black_box(&pp), black_box(&circuit_primary), black_box(&circuit_secondary), black_box(z0_primary.clone()), black_box(z0_secondary.clone()), ) .is_ok()); }) }); group.finish(); } }