//! This module defines R1CS related types and a folding scheme for Relaxed R1CS #![allow(clippy::type_complexity)] use super::{ commitments::{CommitGens, CommitTrait, Commitment, CompressedCommitment}, errors::NovaError, traits::{Group, PrimeField}, }; use itertools::concat; use rayon::prelude::*; /// Public parameters for a given R1CS #[derive(Debug)] pub struct R1CSGens { pub(crate) gens_W: CommitGens, // TODO: avoid pub(crate) pub(crate) gens_E: CommitGens, } /// A type that holds the shape of the R1CS matrices #[derive(Clone, Debug, PartialEq, Eq)] pub struct R1CSShape { num_cons: usize, num_vars: usize, num_io: usize, A: Vec<(usize, usize, G::Scalar)>, B: Vec<(usize, usize, G::Scalar)>, C: Vec<(usize, usize, G::Scalar)>, } /// A type that holds a witness for a given R1CS instance #[derive(Clone, Debug, PartialEq, Eq)] pub struct R1CSWitness { W: Vec, } /// A type that holds an R1CS instance #[derive(Clone, Debug, PartialEq, Eq)] pub struct R1CSInstance { comm_W: Commitment, X: Vec, } /// A type that holds a witness for a given Relaxed R1CS instance #[derive(Clone, Debug, PartialEq, Eq)] pub struct RelaxedR1CSWitness { W: Vec, E: Vec, } /// A type that holds a Relaxed R1CS instance #[derive(Clone, Debug, PartialEq, Eq)] pub struct RelaxedR1CSInstance { pub(crate) comm_W: Commitment, pub(crate) comm_E: Commitment, pub(crate) X: Vec, pub(crate) u: G::Scalar, Y_last: Vec, // output of the last instance that was folded counter: usize, // the number of folds thus far } impl R1CSGens { /// Samples public parameters for the specified number of constraints and variables in an R1CS pub fn new(num_cons: usize, num_vars: usize) -> R1CSGens { // generators to commit to witness vector `W` let gens_W = CommitGens::new(b"gens_W", num_vars); // generators to commit to the error/slack vector `E` let gens_E = CommitGens::new(b"gens_E", num_cons); R1CSGens { gens_E, gens_W } } } impl R1CSShape { /// Create an object of type `R1CSShape` from the explicitly specified R1CS matrices pub fn new( num_cons: usize, num_vars: usize, num_io: usize, A: &[(usize, usize, G::Scalar)], B: &[(usize, usize, G::Scalar)], C: &[(usize, usize, G::Scalar)], ) -> Result, NovaError> { let is_valid = |num_cons: usize, num_vars: usize, num_io: usize, M: &[(usize, usize, G::Scalar)]| -> Result<(), NovaError> { let res = (0..M.len()) .map(|i| { let (row, col, _val) = M[i]; if row >= num_cons || col > num_io + num_vars { Err(NovaError::InvalidIndex) } else { Ok(()) } }) .collect::, NovaError>>(); if res.is_err() { Err(NovaError::InvalidIndex) } else { Ok(()) } }; let res_A = is_valid(num_cons, num_vars, num_io, A); let res_B = is_valid(num_cons, num_vars, num_io, B); let res_C = is_valid(num_cons, num_vars, num_io, C); if res_A.is_err() || res_B.is_err() || res_C.is_err() { return Err(NovaError::InvalidIndex); } // We require the number of public inputs/outputs to be even if num_io % 2 != 0 { return Err(NovaError::OddInputLength); } let shape = R1CSShape { num_cons, num_vars, num_io, A: A.to_owned(), B: B.to_owned(), C: C.to_owned(), }; Ok(shape) } fn multiply_vec( &self, z: &[G::Scalar], ) -> Result<(Vec, Vec, Vec), NovaError> { if z.len() != self.num_io + self.num_vars + 1 { return Err(NovaError::InvalidWitnessLength); } // computes a product between a sparse matrix `M` and a vector `z` // This does not perform any validation of entries in M (e.g., if entries in `M` reference indexes outside the range of `z`) // This is safe since we know that `M` is valid let sparse_matrix_vec_product = |M: &Vec<(usize, usize, G::Scalar)>, num_rows: usize, z: &[G::Scalar]| -> Vec { (0..M.len()) .map(|i| { let (row, col, val) = M[i]; (row, val * z[col]) }) .fold(vec![G::Scalar::zero(); num_rows], |mut Mz, (r, v)| { Mz[r] += v; Mz }) }; let Az = sparse_matrix_vec_product(&self.A, self.num_cons, z); let Bz = sparse_matrix_vec_product(&self.B, self.num_cons, z); let Cz = sparse_matrix_vec_product(&self.C, self.num_cons, z); Ok((Az, Bz, Cz)) } /// Checks if the Relaxed R1CS instance is satisfiable given a witness and its shape pub fn is_sat_relaxed( &self, gens: &R1CSGens, U: &RelaxedR1CSInstance, W: &RelaxedR1CSWitness, ) -> Result<(), NovaError> { assert_eq!(W.W.len(), self.num_vars); assert_eq!(W.E.len(), self.num_cons); assert_eq!(U.X.len(), self.num_io); // verify if Az * Bz = u*Cz + E let res_eq: bool = { let z = concat(vec![W.W.clone(), vec![U.u], U.X.clone()]); let (Az, Bz, Cz) = self.multiply_vec(&z)?; assert_eq!(Az.len(), self.num_cons); assert_eq!(Bz.len(), self.num_cons); assert_eq!(Cz.len(), self.num_cons); let res: usize = (0..self.num_cons) .map(|i| { if Az[i] * Bz[i] == U.u * Cz[i] + W.E[i] { 0 } else { 1 } }) .sum(); res == 0 }; // verify if comm_E and comm_W are commitments to E and W let res_comm: bool = { let comm_W = W.W.commit(&gens.gens_W); let comm_E = W.E.commit(&gens.gens_E); U.comm_W == comm_W && U.comm_E == comm_E }; if res_eq && res_comm { Ok(()) } else { Err(NovaError::UnSat) } } /// Checks if the R1CS instance is satisfiable given a witness and its shape pub fn is_sat( &self, gens: &R1CSGens, U: &R1CSInstance, W: &R1CSWitness, ) -> Result<(), NovaError> { assert_eq!(W.W.len(), self.num_vars); assert_eq!(U.X.len(), self.num_io); // verify if Az * Bz = u*Cz let res_eq: bool = { let z = concat(vec![W.W.clone(), vec![G::Scalar::one()], U.X.clone()]); let (Az, Bz, Cz) = self.multiply_vec(&z)?; assert_eq!(Az.len(), self.num_cons); assert_eq!(Bz.len(), self.num_cons); assert_eq!(Cz.len(), self.num_cons); let res: usize = (0..self.num_cons) .map(|i| if Az[i] * Bz[i] == Cz[i] { 0 } else { 1 }) .sum(); res == 0 }; // verify if comm_W is a commitment to W let res_comm: bool = U.comm_W == W.W.commit(&gens.gens_W); if res_eq && res_comm { Ok(()) } else { Err(NovaError::UnSat) } } /// A method to compute a commitment to the cross-term `T` given a /// Relaxed R1CS instance-witness pair and an R1CS instance-witness pair pub fn commit_T( &self, gens: &R1CSGens, U1: &RelaxedR1CSInstance, W1: &RelaxedR1CSWitness, U2: &R1CSInstance, W2: &R1CSWitness, ) -> Result< ( Vec, CompressedCommitment, ), NovaError, > { let (AZ_1, BZ_1, CZ_1) = { let Z1 = concat(vec![W1.W.clone(), vec![U1.u], U1.X.clone()]); self.multiply_vec(&Z1)? }; let (AZ_2, BZ_2, CZ_2) = { let Z2 = concat(vec![W2.W.clone(), vec![G::Scalar::one()], U2.X.clone()]); self.multiply_vec(&Z2)? }; let AZ_1_circ_BZ_2 = (0..AZ_1.len()) .map(|i| AZ_1[i] * BZ_2[i]) .collect::>(); let AZ_2_circ_BZ_1 = (0..AZ_2.len()) .map(|i| AZ_2[i] * BZ_1[i]) .collect::>(); let u_1_cdot_CZ_2 = (0..CZ_2.len()) .map(|i| U1.u * CZ_2[i]) .collect::>(); let u_2_cdot_CZ_1 = (0..CZ_1.len()).map(|i| CZ_1[i]).collect::>(); let T = AZ_1_circ_BZ_2 .par_iter() .zip(&AZ_2_circ_BZ_1) .zip(&u_1_cdot_CZ_2) .zip(&u_2_cdot_CZ_1) .map(|(((a, b), c), d)| *a + *b - *c - *d) .collect::>(); let comm_T = T.commit(&gens.gens_E).compress(); Ok((T, comm_T)) } } impl R1CSWitness { /// A method to create a witness object using a vector of scalars pub fn new(S: &R1CSShape, W: &[G::Scalar]) -> Result, NovaError> { if S.num_vars != W.len() { Err(NovaError::InvalidWitnessLength) } else { Ok(R1CSWitness { W: W.to_owned() }) } } /// Commits to the witness using the supplied generators pub fn commit(&self, gens: &R1CSGens) -> Commitment { self.W.commit(&gens.gens_W) } } impl R1CSInstance { /// A method to create an instance object using consitituent elements pub fn new( S: &R1CSShape, comm_W: &Commitment, X: &[G::Scalar], ) -> Result, NovaError> { if S.num_io != X.len() { Err(NovaError::InvalidInputLength) } else { Ok(R1CSInstance { comm_W: *comm_W, X: X.to_owned(), }) } } } impl RelaxedR1CSWitness { /// Produces a default RelaxedR1CSWitness given an R1CSShape pub fn default(S: &R1CSShape) -> RelaxedR1CSWitness { RelaxedR1CSWitness { W: vec![G::Scalar::zero(); S.num_vars], E: vec![G::Scalar::zero(); S.num_cons], } } /// Commits to the witness using the supplied generators pub fn commit(&self, gens: &R1CSGens) -> (Commitment, Commitment) { (self.W.commit(&gens.gens_W), self.E.commit(&gens.gens_E)) } /// Folds an incoming R1CSWitness into the current one pub fn fold( &self, W2: &R1CSWitness, T: &[G::Scalar], r: &G::Scalar, ) -> Result, NovaError> { let (W1, E1) = (&self.W, &self.E); let W2 = &W2.W; if W1.len() != W2.len() { return Err(NovaError::InvalidWitnessLength); } let W = W1 .par_iter() .zip(W2) .map(|(a, b)| *a + *r * *b) .collect::>(); let E = E1 .par_iter() .zip(T) .map(|(a, b)| *a + *r * *b) .collect::>(); Ok(RelaxedR1CSWitness { W, E }) } } impl RelaxedR1CSInstance { /// Produces a default RelaxedR1CSInstance given R1CSGens and R1CSShape pub fn default(gens: &R1CSGens, S: &R1CSShape) -> RelaxedR1CSInstance { let (comm_W, comm_E) = RelaxedR1CSWitness::default(S).commit(gens); RelaxedR1CSInstance { comm_W, comm_E, u: G::Scalar::zero(), X: vec![G::Scalar::zero(); S.num_io], Y_last: vec![G::Scalar::zero(); S.num_io / 2], counter: 0, } } /// Folds an incoming RelaxedR1CSInstance into the current one pub fn fold( &self, U2: &R1CSInstance, comm_T: &CompressedCommitment, r: &G::Scalar, ) -> Result, NovaError> { let comm_T_unwrapped = comm_T.decompress()?; let (X1, u1, comm_W_1, comm_E_1) = (&self.X, &self.u, &self.comm_W.clone(), &self.comm_E.clone()); let (X2, comm_W_2) = (&U2.X, &U2.comm_W); // check if the input of the incoming instance matches the output // of the incremental computation thus far if counter > 0 if self.counter > 0 { if self.Y_last.len() != U2.X.len() / 2 { return Err(NovaError::InvalidInputLength); } for i in 0..self.Y_last.len() { if self.Y_last[i] != U2.X[i] { return Err(NovaError::InputOutputMismatch); } } } // weighted sum of X, comm_W, comm_E, and u let X = X1 .par_iter() .zip(X2) .map(|(a, b)| *a + *r * *b) .collect::>(); let comm_W = comm_W_1 + comm_W_2 * r; let comm_E = *comm_E_1 + comm_T_unwrapped * *r; let u = *u1 + *r; Ok(RelaxedR1CSInstance { comm_W, comm_E, X, u, Y_last: U2.X[U2.X.len() / 2..].to_owned(), counter: self.counter + 1, }) } }