//! This module implements `EvaluationEngine` using an IPA-based polynomial commitment scheme
|
|
#![allow(clippy::too_many_arguments)]
|
|
use crate::{
|
|
errors::NovaError,
|
|
provider::pedersen::CommitmentGensExtTrait,
|
|
spartan::polynomial::EqPolynomial,
|
|
traits::{
|
|
commitment::{CommitmentEngineTrait, CommitmentGensTrait, CommitmentTrait},
|
|
evaluation::EvaluationEngineTrait,
|
|
AppendToTranscriptTrait, ChallengeTrait, Group, TranscriptEngineTrait,
|
|
},
|
|
Commitment, CommitmentGens, CompressedCommitment, CE,
|
|
};
|
|
use core::iter;
|
|
use ff::Field;
|
|
use rayon::prelude::*;
|
|
use serde::{Deserialize, Serialize};
|
|
use std::marker::PhantomData;
|
|
|
|
/// Provides an implementation of generators for proving evaluations
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
#[serde(bound = "")]
|
|
pub struct EvaluationGens<G: Group> {
|
|
gens_v: CommitmentGens<G>,
|
|
gens_s: CommitmentGens<G>,
|
|
}
|
|
|
|
/// Provides an implementation of a polynomial evaluation argument
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
#[serde(bound = "")]
|
|
pub struct EvaluationArgument<G: Group> {
|
|
ipa: InnerProductArgument<G>,
|
|
}
|
|
|
|
/// Provides an implementation of a polynomial evaluation engine using IPA
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
pub struct EvaluationEngine<G: Group> {
|
|
_p: PhantomData<G>,
|
|
}
|
|
|
|
impl<G> EvaluationEngineTrait<G> for EvaluationEngine<G>
|
|
where
|
|
G: Group,
|
|
CommitmentGens<G>: CommitmentGensExtTrait<G, CE = G::CE>,
|
|
{
|
|
type CE = G::CE;
|
|
type EvaluationGens = EvaluationGens<G>;
|
|
type EvaluationArgument = EvaluationArgument<G>;
|
|
|
|
fn setup(gens: &<Self::CE as CommitmentEngineTrait<G>>::CommitmentGens) -> Self::EvaluationGens {
|
|
EvaluationGens {
|
|
gens_v: gens.clone(),
|
|
gens_s: CommitmentGens::<G>::new(b"ipa", 1),
|
|
}
|
|
}
|
|
|
|
fn prove(
|
|
gens: &Self::EvaluationGens,
|
|
transcript: &mut G::TE,
|
|
comm: &Commitment<G>,
|
|
poly: &[G::Scalar],
|
|
point: &[G::Scalar],
|
|
eval: &G::Scalar,
|
|
) -> Result<Self::EvaluationArgument, NovaError> {
|
|
let u = InnerProductInstance::new(comm, &EqPolynomial::new(point.to_vec()).evals(), eval);
|
|
let w = InnerProductWitness::new(poly);
|
|
|
|
Ok(EvaluationArgument {
|
|
ipa: InnerProductArgument::prove(&gens.gens_v, &gens.gens_s, &u, &w, transcript)?,
|
|
})
|
|
}
|
|
|
|
/// A method to verify purported evaluations of a batch of polynomials
|
|
fn verify(
|
|
gens: &Self::EvaluationGens,
|
|
transcript: &mut G::TE,
|
|
comm: &Commitment<G>,
|
|
point: &[G::Scalar],
|
|
eval: &G::Scalar,
|
|
arg: &Self::EvaluationArgument,
|
|
) -> Result<(), NovaError> {
|
|
let u = InnerProductInstance::new(comm, &EqPolynomial::new(point.to_vec()).evals(), eval);
|
|
|
|
arg.ipa.verify(
|
|
&gens.gens_v,
|
|
&gens.gens_s,
|
|
(2_usize).pow(point.len() as u32),
|
|
&u,
|
|
transcript,
|
|
)?;
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
fn inner_product<T>(a: &[T], b: &[T]) -> T
|
|
where
|
|
T: Field + Send + Sync,
|
|
{
|
|
assert_eq!(a.len(), b.len());
|
|
(0..a.len())
|
|
.into_par_iter()
|
|
.map(|i| a[i] * b[i])
|
|
.reduce(T::zero, |x, y| x + y)
|
|
}
|
|
|
|
/// An inner product instance consists of a commitment to a vector `a` and another vector `b`
|
|
/// and the claim that c = <a, b>.
|
|
pub struct InnerProductInstance<G: Group> {
|
|
comm_a_vec: Commitment<G>,
|
|
b_vec: Vec<G::Scalar>,
|
|
c: G::Scalar,
|
|
}
|
|
|
|
impl<G: Group> InnerProductInstance<G> {
|
|
fn new(comm_a_vec: &Commitment<G>, b_vec: &[G::Scalar], c: &G::Scalar) -> Self {
|
|
InnerProductInstance {
|
|
comm_a_vec: *comm_a_vec,
|
|
b_vec: b_vec.to_vec(),
|
|
c: *c,
|
|
}
|
|
}
|
|
}
|
|
|
|
struct InnerProductWitness<G: Group> {
|
|
a_vec: Vec<G::Scalar>,
|
|
}
|
|
|
|
impl<G: Group> InnerProductWitness<G> {
|
|
fn new(a_vec: &[G::Scalar]) -> Self {
|
|
InnerProductWitness {
|
|
a_vec: a_vec.to_vec(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An inner product argument
|
|
#[derive(Clone, Debug, Serialize, Deserialize)]
|
|
#[serde(bound = "")]
|
|
struct InnerProductArgument<G: Group> {
|
|
L_vec: Vec<CompressedCommitment<G>>,
|
|
R_vec: Vec<CompressedCommitment<G>>,
|
|
a_hat: G::Scalar,
|
|
_p: PhantomData<G>,
|
|
}
|
|
|
|
impl<G> InnerProductArgument<G>
|
|
where
|
|
G: Group,
|
|
CommitmentGens<G>: CommitmentGensExtTrait<G, CE = G::CE>,
|
|
{
|
|
fn protocol_name() -> &'static [u8] {
|
|
b"inner product argument"
|
|
}
|
|
|
|
fn prove(
|
|
gens: &CommitmentGens<G>,
|
|
gens_c: &CommitmentGens<G>,
|
|
U: &InnerProductInstance<G>,
|
|
W: &InnerProductWitness<G>,
|
|
transcript: &mut G::TE,
|
|
) -> Result<Self, NovaError> {
|
|
transcript.absorb_bytes(b"protocol-name", Self::protocol_name());
|
|
|
|
if U.b_vec.len() != W.a_vec.len() {
|
|
return Err(NovaError::InvalidInputLength);
|
|
}
|
|
|
|
U.comm_a_vec.append_to_transcript(b"comm_a_vec", transcript);
|
|
<G::Scalar as AppendToTranscriptTrait<G>>::append_to_transcript(&U.c, b"c", transcript);
|
|
|
|
// sample a random base for commiting to the inner product
|
|
let r = G::Scalar::challenge(b"r", transcript)?;
|
|
let gens_c = gens_c.scale(&r);
|
|
|
|
// a closure that executes a step of the recursive inner product argument
|
|
let prove_inner = |a_vec: &[G::Scalar],
|
|
b_vec: &[G::Scalar],
|
|
gens: &CommitmentGens<G>,
|
|
transcript: &mut G::TE|
|
|
-> Result<
|
|
(
|
|
CompressedCommitment<G>,
|
|
CompressedCommitment<G>,
|
|
Vec<G::Scalar>,
|
|
Vec<G::Scalar>,
|
|
CommitmentGens<G>,
|
|
),
|
|
NovaError,
|
|
> {
|
|
let n = a_vec.len();
|
|
let (gens_L, gens_R) = gens.split_at(n / 2);
|
|
|
|
let c_L = inner_product(&a_vec[0..n / 2], &b_vec[n / 2..n]);
|
|
let c_R = inner_product(&a_vec[n / 2..n], &b_vec[0..n / 2]);
|
|
|
|
let L = CE::<G>::commit(
|
|
&gens_R.combine(&gens_c),
|
|
&a_vec[0..n / 2]
|
|
.iter()
|
|
.chain(iter::once(&c_L))
|
|
.copied()
|
|
.collect::<Vec<G::Scalar>>(),
|
|
)
|
|
.compress();
|
|
let R = CE::<G>::commit(
|
|
&gens_L.combine(&gens_c),
|
|
&a_vec[n / 2..n]
|
|
.iter()
|
|
.chain(iter::once(&c_R))
|
|
.copied()
|
|
.collect::<Vec<G::Scalar>>(),
|
|
)
|
|
.compress();
|
|
|
|
L.append_to_transcript(b"L", transcript);
|
|
R.append_to_transcript(b"R", transcript);
|
|
|
|
let r = G::Scalar::challenge(b"challenge_r", transcript)?;
|
|
let r_inverse = r.invert().unwrap();
|
|
|
|
// fold the left half and the right half
|
|
let a_vec_folded = a_vec[0..n / 2]
|
|
.par_iter()
|
|
.zip(a_vec[n / 2..n].par_iter())
|
|
.map(|(a_L, a_R)| *a_L * r + r_inverse * *a_R)
|
|
.collect::<Vec<G::Scalar>>();
|
|
|
|
let b_vec_folded = b_vec[0..n / 2]
|
|
.par_iter()
|
|
.zip(b_vec[n / 2..n].par_iter())
|
|
.map(|(b_L, b_R)| *b_L * r_inverse + r * *b_R)
|
|
.collect::<Vec<G::Scalar>>();
|
|
|
|
let gens_folded = gens.fold(&r_inverse, &r);
|
|
|
|
Ok((L, R, a_vec_folded, b_vec_folded, gens_folded))
|
|
};
|
|
|
|
// two vectors to hold the logarithmic number of group elements
|
|
let mut L_vec: Vec<CompressedCommitment<G>> = Vec::new();
|
|
let mut R_vec: Vec<CompressedCommitment<G>> = Vec::new();
|
|
|
|
// we create mutable copies of vectors and generators
|
|
let mut a_vec = W.a_vec.to_vec();
|
|
let mut b_vec = U.b_vec.to_vec();
|
|
let mut gens = gens.clone();
|
|
for _i in 0..(U.b_vec.len() as f64).log2() as usize {
|
|
let (L, R, a_vec_folded, b_vec_folded, gens_folded) =
|
|
prove_inner(&a_vec, &b_vec, &gens, transcript)?;
|
|
L_vec.push(L);
|
|
R_vec.push(R);
|
|
|
|
a_vec = a_vec_folded;
|
|
b_vec = b_vec_folded;
|
|
gens = gens_folded;
|
|
}
|
|
|
|
Ok(InnerProductArgument {
|
|
L_vec,
|
|
R_vec,
|
|
a_hat: a_vec[0],
|
|
_p: Default::default(),
|
|
})
|
|
}
|
|
|
|
fn verify(
|
|
&self,
|
|
gens: &CommitmentGens<G>,
|
|
gens_c: &CommitmentGens<G>,
|
|
n: usize,
|
|
U: &InnerProductInstance<G>,
|
|
transcript: &mut G::TE,
|
|
) -> Result<(), NovaError> {
|
|
transcript.absorb_bytes(b"protocol-name", Self::protocol_name());
|
|
if U.b_vec.len() != n
|
|
|| n != (1 << self.L_vec.len())
|
|
|| self.L_vec.len() != self.R_vec.len()
|
|
|| self.L_vec.len() >= 32
|
|
{
|
|
return Err(NovaError::InvalidInputLength);
|
|
}
|
|
|
|
U.comm_a_vec.append_to_transcript(b"comm_a_vec", transcript);
|
|
<G::Scalar as AppendToTranscriptTrait<G>>::append_to_transcript(&U.c, b"c", transcript);
|
|
|
|
// sample a random base for commiting to the inner product
|
|
let r = G::Scalar::challenge(b"r", transcript)?;
|
|
let gens_c = gens_c.scale(&r);
|
|
|
|
let P = U.comm_a_vec + CE::<G>::commit(&gens_c, &[U.c]);
|
|
|
|
let batch_invert = |v: &[G::Scalar]| -> Result<Vec<G::Scalar>, NovaError> {
|
|
let mut products = vec![G::Scalar::zero(); v.len()];
|
|
let mut acc = G::Scalar::one();
|
|
|
|
for i in 0..v.len() {
|
|
products[i] = acc;
|
|
acc *= v[i];
|
|
}
|
|
|
|
// we can compute an inversion only if acc is non-zero
|
|
if acc == G::Scalar::zero() {
|
|
return Err(NovaError::InvalidInputLength);
|
|
}
|
|
|
|
// compute the inverse once for all entries
|
|
acc = acc.invert().unwrap();
|
|
|
|
let mut inv = vec![G::Scalar::zero(); v.len()];
|
|
for i in 0..v.len() {
|
|
let tmp = acc * v[v.len() - 1 - i];
|
|
inv[v.len() - 1 - i] = products[v.len() - 1 - i] * acc;
|
|
acc = tmp;
|
|
}
|
|
|
|
Ok(inv)
|
|
};
|
|
|
|
// compute a vector of public coins using self.L_vec and self.R_vec
|
|
let r = (0..self.L_vec.len())
|
|
.map(|i| {
|
|
self.L_vec[i].append_to_transcript(b"L", transcript);
|
|
self.R_vec[i].append_to_transcript(b"R", transcript);
|
|
G::Scalar::challenge(b"challenge_r", transcript)
|
|
})
|
|
.collect::<Result<Vec<G::Scalar>, NovaError>>()?;
|
|
|
|
// precompute scalars necessary for verification
|
|
let r_square: Vec<G::Scalar> = (0..self.L_vec.len())
|
|
.into_par_iter()
|
|
.map(|i| r[i] * r[i])
|
|
.collect();
|
|
let r_inverse = batch_invert(&r)?;
|
|
let r_inverse_square: Vec<G::Scalar> = (0..self.L_vec.len())
|
|
.into_par_iter()
|
|
.map(|i| r_inverse[i] * r_inverse[i])
|
|
.collect();
|
|
|
|
// compute the vector with the tensor structure
|
|
let s = {
|
|
let mut s = vec![G::Scalar::zero(); n];
|
|
s[0] = {
|
|
let mut v = G::Scalar::one();
|
|
for r_inverse_i in &r_inverse {
|
|
v *= r_inverse_i;
|
|
}
|
|
v
|
|
};
|
|
for i in 1..n {
|
|
let pos_in_r = (31 - (i as u32).leading_zeros()) as usize;
|
|
s[i] = s[i - (1 << pos_in_r)] * r_square[(self.L_vec.len() - 1) - pos_in_r];
|
|
}
|
|
s
|
|
};
|
|
|
|
let gens_hat = {
|
|
let c = CE::<G>::commit(gens, &s).compress();
|
|
CommitmentGens::<G>::reinterpret_commitments_as_gens(&[c])?
|
|
};
|
|
|
|
let b_hat = inner_product(&U.b_vec, &s);
|
|
|
|
let P_hat = {
|
|
let gens_folded = {
|
|
let gens_L = CommitmentGens::<G>::reinterpret_commitments_as_gens(&self.L_vec)?;
|
|
let gens_R = CommitmentGens::<G>::reinterpret_commitments_as_gens(&self.R_vec)?;
|
|
let gens_P = CommitmentGens::<G>::reinterpret_commitments_as_gens(&[P.compress()])?;
|
|
gens_L.combine(&gens_R).combine(&gens_P)
|
|
};
|
|
|
|
CE::<G>::commit(
|
|
&gens_folded,
|
|
&r_square
|
|
.iter()
|
|
.chain(r_inverse_square.iter())
|
|
.chain(iter::once(&G::Scalar::one()))
|
|
.copied()
|
|
.collect::<Vec<G::Scalar>>(),
|
|
)
|
|
};
|
|
|
|
if P_hat
|
|
== CE::<G>::commit(
|
|
&gens_hat.combine(&gens_c),
|
|
&[self.a_hat, self.a_hat * b_hat],
|
|
)
|
|
{
|
|
Ok(())
|
|
} else {
|
|
Err(NovaError::InvalidIPA)
|
|
}
|
|
}
|
|
}
|