You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1301 lines
39 KiB

//! This library implements Nova, a high-speed recursive SNARK.
#![deny(
warnings,
unused,
future_incompatible,
nonstandard_style,
rust_2018_idioms,
missing_docs
)]
#![allow(non_snake_case)]
#![allow(clippy::type_complexity)]
#![forbid(unsafe_code)]
// private modules
mod bellperson;
mod circuit;
mod constants;
mod nifs;
mod r1cs;
// public modules
pub mod errors;
pub mod gadgets;
pub mod provider;
pub mod spartan;
pub mod traits;
use crate::bellperson::{
r1cs::{NovaShape, NovaWitness},
shape_cs::ShapeCS,
solver::SatisfyingAssignment,
};
use ::bellperson::{Circuit, ConstraintSystem};
use circuit::{NovaAugmentedCircuit, NovaAugmentedCircuitInputs, NovaAugmentedCircuitParams};
use constants::{BN_LIMB_WIDTH, BN_N_LIMBS, NUM_FE_WITHOUT_IO_FOR_CRHF, NUM_HASH_BITS};
use core::marker::PhantomData;
use errors::NovaError;
use ff::Field;
use gadgets::utils::scalar_as_base;
use nifs::NIFS;
use r1cs::{R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness};
use serde::{Deserialize, Serialize};
use traits::{
circuit::StepCircuit,
commitment::{CommitmentEngineTrait, CommitmentTrait},
snark::RelaxedR1CSSNARKTrait,
AbsorbInROTrait, Group, ROConstants, ROConstantsCircuit, ROConstantsTrait, ROTrait,
};
/// A type that holds public parameters of Nova
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct PublicParams<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
{
F_arity_primary: usize,
F_arity_secondary: usize,
ro_consts_primary: ROConstants<G1>,
ro_consts_circuit_primary: ROConstantsCircuit<G2>,
ck_primary: CommitmentKey<G1>,
r1cs_shape_primary: R1CSShape<G1>,
ro_consts_secondary: ROConstants<G2>,
ro_consts_circuit_secondary: ROConstantsCircuit<G1>,
ck_secondary: CommitmentKey<G2>,
r1cs_shape_secondary: R1CSShape<G2>,
augmented_circuit_params_primary: NovaAugmentedCircuitParams,
augmented_circuit_params_secondary: NovaAugmentedCircuitParams,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
impl<G1, G2, C1, C2> PublicParams<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
{
/// Create a new `PublicParams`
pub fn setup(c_primary: C1, c_secondary: C2) -> Self {
let augmented_circuit_params_primary =
NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, true);
let augmented_circuit_params_secondary =
NovaAugmentedCircuitParams::new(BN_LIMB_WIDTH, BN_N_LIMBS, false);
let ro_consts_primary: ROConstants<G1> = ROConstants::<G1>::new();
let ro_consts_secondary: ROConstants<G2> = ROConstants::<G2>::new();
let F_arity_primary = c_primary.arity();
let F_arity_secondary = c_secondary.arity();
// ro_consts_circuit_primary are parameterized by G2 because the type alias uses G2::Base = G1::Scalar
let ro_consts_circuit_primary: ROConstantsCircuit<G2> = ROConstantsCircuit::<G2>::new();
let ro_consts_circuit_secondary: ROConstantsCircuit<G1> = ROConstantsCircuit::<G1>::new();
// Initialize ck for the primary
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
augmented_circuit_params_primary.clone(),
None,
c_primary,
ro_consts_circuit_primary.clone(),
);
let mut cs: ShapeCS<G1> = ShapeCS::new();
let _ = circuit_primary.synthesize(&mut cs);
let (r1cs_shape_primary, ck_primary) = cs.r1cs_shape();
// Initialize ck for the secondary
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
augmented_circuit_params_secondary.clone(),
None,
c_secondary,
ro_consts_circuit_secondary.clone(),
);
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = circuit_secondary.synthesize(&mut cs);
let (r1cs_shape_secondary, ck_secondary) = cs.r1cs_shape();
Self {
F_arity_primary,
F_arity_secondary,
ro_consts_primary,
ro_consts_circuit_primary,
ck_primary,
r1cs_shape_primary,
ro_consts_secondary,
ro_consts_circuit_secondary,
ck_secondary,
r1cs_shape_secondary,
augmented_circuit_params_primary,
augmented_circuit_params_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
}
}
/// Returns the number of constraints in the primary and secondary circuits
pub fn num_constraints(&self) -> (usize, usize) {
(
self.r1cs_shape_primary.num_cons,
self.r1cs_shape_secondary.num_cons,
)
}
/// Returns the number of variables in the primary and secondary circuits
pub fn num_variables(&self) -> (usize, usize) {
(
self.r1cs_shape_primary.num_vars,
self.r1cs_shape_secondary.num_vars,
)
}
}
/// A SNARK that proves the correct execution of an incremental computation
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct RecursiveSNARK<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
{
r_W_primary: RelaxedR1CSWitness<G1>,
r_U_primary: RelaxedR1CSInstance<G1>,
l_w_primary: R1CSWitness<G1>,
l_u_primary: R1CSInstance<G1>,
r_W_secondary: RelaxedR1CSWitness<G2>,
r_U_secondary: RelaxedR1CSInstance<G2>,
l_w_secondary: R1CSWitness<G2>,
l_u_secondary: R1CSInstance<G2>,
i: usize,
zi_primary: Vec<G1::Scalar>,
zi_secondary: Vec<G2::Scalar>,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
impl<G1, G2, C1, C2> RecursiveSNARK<G1, G2, C1, C2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
{
/// Create a new `RecursiveSNARK` (or updates the provided `RecursiveSNARK`)
/// by executing a step of the incremental computation
pub fn prove_step(
pp: &PublicParams<G1, G2, C1, C2>,
recursive_snark: Option<Self>,
c_primary: C1,
c_secondary: C2,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<Self, NovaError> {
if z0_primary.len() != pp.F_arity_primary || z0_secondary.len() != pp.F_arity_secondary {
return Err(NovaError::InvalidInitialInputLength);
}
match recursive_snark {
None => {
// base case for the primary
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
pp.r1cs_shape_secondary.get_digest(),
G1::Scalar::zero(),
z0_primary.clone(),
None,
None,
None,
None,
);
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_primary.clone(),
Some(inputs_primary),
c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
let (u_primary, w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
.map_err(|_e| NovaError::UnSat)?;
// base case for the secondary
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.r1cs_shape_primary.get_digest(),
G2::Scalar::zero(),
z0_secondary.clone(),
None,
None,
Some(u_primary.clone()),
None,
);
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_secondary.clone(),
Some(inputs_secondary),
c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
let (u_secondary, w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
.map_err(|_e| NovaError::UnSat)?;
// IVC proof for the primary circuit
let l_w_primary = w_primary;
let l_u_primary = u_primary;
let r_W_primary =
RelaxedR1CSWitness::from_r1cs_witness(&pp.r1cs_shape_primary, &l_w_primary);
let r_U_primary = RelaxedR1CSInstance::from_r1cs_instance(
&pp.ck_primary,
&pp.r1cs_shape_primary,
&l_u_primary,
);
// IVC proof of the secondary circuit
let l_w_secondary = w_secondary;
let l_u_secondary = u_secondary;
let r_W_secondary = RelaxedR1CSWitness::<G2>::default(&pp.r1cs_shape_secondary);
let r_U_secondary =
RelaxedR1CSInstance::<G2>::default(&pp.ck_secondary, &pp.r1cs_shape_secondary);
// Outputs of the two circuits thus far
let zi_primary = c_primary.output(&z0_primary);
let zi_secondary = c_secondary.output(&z0_secondary);
if zi_primary.len() != pp.F_arity_primary || zi_secondary.len() != pp.F_arity_secondary {
return Err(NovaError::InvalidStepOutputLength);
}
Ok(Self {
r_W_primary,
r_U_primary,
l_w_primary,
l_u_primary,
r_W_secondary,
r_U_secondary,
l_w_secondary,
l_u_secondary,
i: 1_usize,
zi_primary,
zi_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
})
}
Some(r_snark) => {
// fold the secondary circuit's instance
let (nifs_secondary, (r_U_secondary, r_W_secondary)) = NIFS::prove(
&pp.ck_secondary,
&pp.ro_consts_secondary,
&pp.r1cs_shape_secondary,
&r_snark.r_U_secondary,
&r_snark.r_W_secondary,
&r_snark.l_u_secondary,
&r_snark.l_w_secondary,
)?;
let mut cs_primary: SatisfyingAssignment<G1> = SatisfyingAssignment::new();
let inputs_primary: NovaAugmentedCircuitInputs<G2> = NovaAugmentedCircuitInputs::new(
pp.r1cs_shape_secondary.get_digest(),
G1::Scalar::from(r_snark.i as u64),
z0_primary,
Some(r_snark.zi_primary.clone()),
Some(r_snark.r_U_secondary.clone()),
Some(r_snark.l_u_secondary.clone()),
Some(Commitment::<G2>::decompress(&nifs_secondary.comm_T)?),
);
let circuit_primary: NovaAugmentedCircuit<G2, C1> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_primary.clone(),
Some(inputs_primary),
c_primary.clone(),
pp.ro_consts_circuit_primary.clone(),
);
let _ = circuit_primary.synthesize(&mut cs_primary);
let (l_u_primary, l_w_primary) = cs_primary
.r1cs_instance_and_witness(&pp.r1cs_shape_primary, &pp.ck_primary)
.map_err(|_e| NovaError::UnSat)?;
// fold the primary circuit's instance
let (nifs_primary, (r_U_primary, r_W_primary)) = NIFS::prove(
&pp.ck_primary,
&pp.ro_consts_primary,
&pp.r1cs_shape_primary,
&r_snark.r_U_primary,
&r_snark.r_W_primary,
&l_u_primary,
&l_w_primary,
)?;
let mut cs_secondary: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let inputs_secondary: NovaAugmentedCircuitInputs<G1> = NovaAugmentedCircuitInputs::new(
pp.r1cs_shape_primary.get_digest(),
G2::Scalar::from(r_snark.i as u64),
z0_secondary,
Some(r_snark.zi_secondary.clone()),
Some(r_snark.r_U_primary.clone()),
Some(l_u_primary.clone()),
Some(Commitment::<G1>::decompress(&nifs_primary.comm_T)?),
);
let circuit_secondary: NovaAugmentedCircuit<G1, C2> = NovaAugmentedCircuit::new(
pp.augmented_circuit_params_secondary.clone(),
Some(inputs_secondary),
c_secondary.clone(),
pp.ro_consts_circuit_secondary.clone(),
);
let _ = circuit_secondary.synthesize(&mut cs_secondary);
let (l_u_secondary, l_w_secondary) = cs_secondary
.r1cs_instance_and_witness(&pp.r1cs_shape_secondary, &pp.ck_secondary)
.map_err(|_e| NovaError::UnSat)?;
// update the running instances and witnesses
let zi_primary = c_primary.output(&r_snark.zi_primary);
let zi_secondary = c_secondary.output(&r_snark.zi_secondary);
Ok(Self {
r_W_primary,
r_U_primary,
l_w_primary,
l_u_primary,
r_W_secondary,
r_U_secondary,
l_w_secondary,
l_u_secondary,
i: r_snark.i + 1,
zi_primary,
zi_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
})
}
}
}
/// Verify the correctness of the `RecursiveSNARK`
pub fn verify(
&self,
pp: &PublicParams<G1, G2, C1, C2>,
num_steps: usize,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<(Vec<G1::Scalar>, Vec<G2::Scalar>), NovaError> {
// number of steps cannot be zero
if num_steps == 0 {
return Err(NovaError::ProofVerifyError);
}
// check if the provided proof has executed num_steps
if self.i != num_steps {
return Err(NovaError::ProofVerifyError);
}
// check if the (relaxed) R1CS instances have two public outputs
if self.l_u_primary.X.len() != 2
|| self.l_u_secondary.X.len() != 2
|| self.r_U_primary.X.len() != 2
|| self.r_U_secondary.X.len() != 2
{
return Err(NovaError::ProofVerifyError);
}
// check if the output hashes in R1CS instances point to the right running instances
let (hash_primary, hash_secondary) = {
let mut hasher = <G2 as Group>::RO::new(
pp.ro_consts_secondary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * pp.F_arity_primary,
);
hasher.absorb(scalar_as_base::<G2>(pp.r1cs_shape_secondary.get_digest()));
hasher.absorb(G1::Scalar::from(num_steps as u64));
for e in &z0_primary {
hasher.absorb(*e);
}
for e in &self.zi_primary {
hasher.absorb(*e);
}
self.r_U_secondary.absorb_in_ro(&mut hasher);
let mut hasher2 = <G1 as Group>::RO::new(
pp.ro_consts_primary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * pp.F_arity_secondary,
);
hasher2.absorb(scalar_as_base::<G1>(pp.r1cs_shape_primary.get_digest()));
hasher2.absorb(G2::Scalar::from(num_steps as u64));
for e in &z0_secondary {
hasher2.absorb(*e);
}
for e in &self.zi_secondary {
hasher2.absorb(*e);
}
self.r_U_primary.absorb_in_ro(&mut hasher2);
(
hasher.squeeze(NUM_HASH_BITS),
hasher2.squeeze(NUM_HASH_BITS),
)
};
if hash_primary != scalar_as_base::<G1>(self.l_u_primary.X[1])
|| hash_secondary != scalar_as_base::<G2>(self.l_u_secondary.X[1])
{
return Err(NovaError::ProofVerifyError);
}
// check the satisfiability of the provided instances
let ((res_r_primary, res_l_primary), (res_r_secondary, res_l_secondary)) = rayon::join(
|| {
rayon::join(
|| {
pp.r1cs_shape_primary.is_sat_relaxed(
&pp.ck_primary,
&self.r_U_primary,
&self.r_W_primary,
)
},
|| {
pp.r1cs_shape_primary
.is_sat(&pp.ck_primary, &self.l_u_primary, &self.l_w_primary)
},
)
},
|| {
rayon::join(
|| {
pp.r1cs_shape_secondary.is_sat_relaxed(
&pp.ck_secondary,
&self.r_U_secondary,
&self.r_W_secondary,
)
},
|| {
pp.r1cs_shape_secondary.is_sat(
&pp.ck_secondary,
&self.l_u_secondary,
&self.l_w_secondary,
)
},
)
},
);
// check the returned res objects
res_r_primary?;
res_l_primary?;
res_r_secondary?;
res_l_secondary?;
Ok((self.zi_primary.clone(), self.zi_secondary.clone()))
}
}
/// A type that holds the prover key for `CompressedSNARK`
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct ProverKey<G1, G2, C1, C2, S1, S2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
S1: RelaxedR1CSSNARKTrait<G1>,
S2: RelaxedR1CSSNARKTrait<G2>,
{
pk_primary: S1::ProverKey,
pk_secondary: S2::ProverKey,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
/// A type that holds the verifier key for `CompressedSNARK`
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct VerifierKey<G1, G2, C1, C2, S1, S2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
S1: RelaxedR1CSSNARKTrait<G1>,
S2: RelaxedR1CSSNARKTrait<G2>,
{
F_arity_primary: usize,
F_arity_secondary: usize,
ro_consts_primary: ROConstants<G1>,
ro_consts_secondary: ROConstants<G2>,
r1cs_shape_primary_digest: G1::Scalar,
r1cs_shape_secondary_digest: G2::Scalar,
vk_primary: S1::VerifierKey,
vk_secondary: S2::VerifierKey,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
/// A SNARK that proves the knowledge of a valid `RecursiveSNARK`
#[derive(Clone, Serialize, Deserialize)]
#[serde(bound = "")]
pub struct CompressedSNARK<G1, G2, C1, C2, S1, S2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
S1: RelaxedR1CSSNARKTrait<G1>,
S2: RelaxedR1CSSNARKTrait<G2>,
{
r_U_primary: RelaxedR1CSInstance<G1>,
l_u_primary: R1CSInstance<G1>,
nifs_primary: NIFS<G1>,
f_W_snark_primary: S1,
r_U_secondary: RelaxedR1CSInstance<G2>,
l_u_secondary: R1CSInstance<G2>,
nifs_secondary: NIFS<G2>,
f_W_snark_secondary: S2,
zn_primary: Vec<G1::Scalar>,
zn_secondary: Vec<G2::Scalar>,
_p_c1: PhantomData<C1>,
_p_c2: PhantomData<C2>,
}
impl<G1, G2, C1, C2, S1, S2> CompressedSNARK<G1, G2, C1, C2, S1, S2>
where
G1: Group<Base = <G2 as Group>::Scalar>,
G2: Group<Base = <G1 as Group>::Scalar>,
C1: StepCircuit<G1::Scalar>,
C2: StepCircuit<G2::Scalar>,
S1: RelaxedR1CSSNARKTrait<G1>,
S2: RelaxedR1CSSNARKTrait<G2>,
{
/// Creates prover and verifier keys for `CompressedSNARK`
pub fn setup(
pp: &PublicParams<G1, G2, C1, C2>,
) -> Result<
(
ProverKey<G1, G2, C1, C2, S1, S2>,
VerifierKey<G1, G2, C1, C2, S1, S2>,
),
NovaError,
> {
let (pk_primary, vk_primary) = S1::setup(&pp.ck_primary, &pp.r1cs_shape_primary)?;
let (pk_secondary, vk_secondary) = S2::setup(&pp.ck_secondary, &pp.r1cs_shape_secondary)?;
let pk = ProverKey {
pk_primary,
pk_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
};
let vk = VerifierKey {
F_arity_primary: pp.F_arity_primary,
F_arity_secondary: pp.F_arity_secondary,
ro_consts_primary: pp.ro_consts_primary.clone(),
ro_consts_secondary: pp.ro_consts_secondary.clone(),
r1cs_shape_primary_digest: pp.r1cs_shape_primary.get_digest(),
r1cs_shape_secondary_digest: pp.r1cs_shape_secondary.get_digest(),
vk_primary,
vk_secondary,
_p_c1: Default::default(),
_p_c2: Default::default(),
};
Ok((pk, vk))
}
/// Create a new `CompressedSNARK`
pub fn prove(
pp: &PublicParams<G1, G2, C1, C2>,
pk: &ProverKey<G1, G2, C1, C2, S1, S2>,
recursive_snark: &RecursiveSNARK<G1, G2, C1, C2>,
) -> Result<Self, NovaError> {
let (res_primary, res_secondary) = rayon::join(
// fold the primary circuit's instance
|| {
NIFS::prove(
&pp.ck_primary,
&pp.ro_consts_primary,
&pp.r1cs_shape_primary,
&recursive_snark.r_U_primary,
&recursive_snark.r_W_primary,
&recursive_snark.l_u_primary,
&recursive_snark.l_w_primary,
)
},
|| {
// fold the secondary circuit's instance
NIFS::prove(
&pp.ck_secondary,
&pp.ro_consts_secondary,
&pp.r1cs_shape_secondary,
&recursive_snark.r_U_secondary,
&recursive_snark.r_W_secondary,
&recursive_snark.l_u_secondary,
&recursive_snark.l_w_secondary,
)
},
);
let (nifs_primary, (f_U_primary, f_W_primary)) = res_primary?;
let (nifs_secondary, (f_U_secondary, f_W_secondary)) = res_secondary?;
// create SNARKs proving the knowledge of f_W_primary and f_W_secondary
let (f_W_snark_primary, f_W_snark_secondary) = rayon::join(
|| S1::prove(&pp.ck_primary, &pk.pk_primary, &f_U_primary, &f_W_primary),
|| {
S2::prove(
&pp.ck_secondary,
&pk.pk_secondary,
&f_U_secondary,
&f_W_secondary,
)
},
);
Ok(Self {
r_U_primary: recursive_snark.r_U_primary.clone(),
l_u_primary: recursive_snark.l_u_primary.clone(),
nifs_primary,
f_W_snark_primary: f_W_snark_primary?,
r_U_secondary: recursive_snark.r_U_secondary.clone(),
l_u_secondary: recursive_snark.l_u_secondary.clone(),
nifs_secondary,
f_W_snark_secondary: f_W_snark_secondary?,
zn_primary: recursive_snark.zi_primary.clone(),
zn_secondary: recursive_snark.zi_secondary.clone(),
_p_c1: Default::default(),
_p_c2: Default::default(),
})
}
/// Verify the correctness of the `CompressedSNARK`
pub fn verify(
&self,
vk: &VerifierKey<G1, G2, C1, C2, S1, S2>,
num_steps: usize,
z0_primary: Vec<G1::Scalar>,
z0_secondary: Vec<G2::Scalar>,
) -> Result<(Vec<G1::Scalar>, Vec<G2::Scalar>), NovaError> {
// number of steps cannot be zero
if num_steps == 0 {
return Err(NovaError::ProofVerifyError);
}
// check if the (relaxed) R1CS instances have two public outputs
if self.l_u_primary.X.len() != 2
|| self.l_u_secondary.X.len() != 2
|| self.r_U_primary.X.len() != 2
|| self.r_U_secondary.X.len() != 2
{
return Err(NovaError::ProofVerifyError);
}
// check if the output hashes in R1CS instances point to the right running instances
let (hash_primary, hash_secondary) = {
let mut hasher = <G2 as Group>::RO::new(
vk.ro_consts_secondary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * vk.F_arity_primary,
);
hasher.absorb(scalar_as_base::<G2>(vk.r1cs_shape_secondary_digest));
hasher.absorb(G1::Scalar::from(num_steps as u64));
for e in z0_primary {
hasher.absorb(e);
}
for e in &self.zn_primary {
hasher.absorb(*e);
}
self.r_U_secondary.absorb_in_ro(&mut hasher);
let mut hasher2 = <G1 as Group>::RO::new(
vk.ro_consts_primary.clone(),
NUM_FE_WITHOUT_IO_FOR_CRHF + 2 * vk.F_arity_secondary,
);
hasher2.absorb(scalar_as_base::<G1>(vk.r1cs_shape_primary_digest));
hasher2.absorb(G2::Scalar::from(num_steps as u64));
for e in z0_secondary {
hasher2.absorb(e);
}
for e in &self.zn_secondary {
hasher2.absorb(*e);
}
self.r_U_primary.absorb_in_ro(&mut hasher2);
(
hasher.squeeze(NUM_HASH_BITS),
hasher2.squeeze(NUM_HASH_BITS),
)
};
if hash_primary != scalar_as_base::<G1>(self.l_u_primary.X[1])
|| hash_secondary != scalar_as_base::<G2>(self.l_u_secondary.X[1])
{
return Err(NovaError::ProofVerifyError);
}
// fold the running instance and last instance to get a folded instance
let f_U_primary = self.nifs_primary.verify(
&vk.ro_consts_primary,
&vk.r1cs_shape_primary_digest,
&self.r_U_primary,
&self.l_u_primary,
)?;
let f_U_secondary = self.nifs_secondary.verify(
&vk.ro_consts_secondary,
&vk.r1cs_shape_secondary_digest,
&self.r_U_secondary,
&self.l_u_secondary,
)?;
// check the satisfiability of the folded instances using SNARKs proving the knowledge of their satisfying witnesses
let (res_primary, res_secondary) = rayon::join(
|| self.f_W_snark_primary.verify(&vk.vk_primary, &f_U_primary),
|| {
self
.f_W_snark_secondary
.verify(&vk.vk_secondary, &f_U_secondary)
},
);
res_primary?;
res_secondary?;
Ok((self.zn_primary.clone(), self.zn_secondary.clone()))
}
}
type CommitmentKey<G> = <<G as traits::Group>::CE as CommitmentEngineTrait<G>>::CommitmentKey;
type Commitment<G> = <<G as Group>::CE as CommitmentEngineTrait<G>>::Commitment;
type CompressedCommitment<G> = <<<G as Group>::CE as CommitmentEngineTrait<G>>::Commitment as CommitmentTrait<G>>::CompressedCommitment;
type CE<G> = <G as Group>::CE;
#[cfg(test)]
mod tests {
use super::*;
type G1 = pasta_curves::pallas::Point;
type G2 = pasta_curves::vesta::Point;
type EE1 = provider::ipa_pc::EvaluationEngine<G1>;
type EE2 = provider::ipa_pc::EvaluationEngine<G2>;
type S1 = spartan::RelaxedR1CSSNARK<G1, EE1>;
type S2 = spartan::RelaxedR1CSSNARK<G2, EE2>;
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
use core::marker::PhantomData;
use ff::PrimeField;
use traits::circuit::TrivialTestCircuit;
#[derive(Clone, Debug, Default)]
struct CubicCircuit<F: PrimeField> {
_p: PhantomData<F>,
}
impl<F> StepCircuit<F> for CubicCircuit<F>
where
F: PrimeField,
{
fn arity(&self) -> usize {
1
}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: &[AllocatedNum<F>],
) -> Result<Vec<AllocatedNum<F>>, SynthesisError> {
// Consider a cubic equation: `x^3 + x + 5 = y`, where `x` and `y` are respectively the input and output.
let x = &z[0];
let x_sq = x.square(cs.namespace(|| "x_sq"))?;
let x_cu = x_sq.mul(cs.namespace(|| "x_cu"), x)?;
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(x_cu.get_value().unwrap() + x.get_value().unwrap() + F::from(5u64))
})?;
cs.enforce(
|| "y = x^3 + x + 5",
|lc| {
lc + x_cu.get_variable()
+ x.get_variable()
+ CS::one()
+ CS::one()
+ CS::one()
+ CS::one()
+ CS::one()
},
|lc| lc + CS::one(),
|lc| lc + y.get_variable(),
);
Ok(vec![y])
}
fn output(&self, z: &[F]) -> Vec<F> {
vec![z[0] * z[0] * z[0] + z[0] + F::from(5u64)]
}
}
#[test]
fn test_ivc_trivial() {
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>::setup(TrivialTestCircuit::default(), TrivialTestCircuit::default());
let num_steps = 1;
// produce a recursive SNARK
let res = RecursiveSNARK::prove_step(
&pp,
None,
TrivialTestCircuit::default(),
TrivialTestCircuit::default(),
vec![<G1 as Group>::Scalar::zero()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::zero()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
}
#[test]
fn test_ivc_nontrivial() {
let circuit_primary = TrivialTestCircuit::default();
let circuit_secondary = CubicCircuit::default();
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary.clone(), circuit_secondary.clone());
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
for i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let recursive_snark_unwrapped = res.unwrap();
// verify the recursive snark at each step of recursion
let res = recursive_snark_unwrapped.verify(
&pp,
i + 1,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
// set the running variable for the next iteration
recursive_snark = Some(recursive_snark_unwrapped);
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
// sanity: check the claimed output with a direct computation of the same
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
let mut zn_secondary_direct = vec![<G2 as Group>::Scalar::zero()];
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit::default().output(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
}
#[test]
fn test_ivc_nontrivial_with_compression() {
let circuit_primary = TrivialTestCircuit::default();
let circuit_secondary = CubicCircuit::default();
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary.clone(), circuit_secondary.clone());
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
for _i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
// sanity: check the claimed output with a direct computation of the same
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
let mut zn_secondary_direct = vec![<G2 as Group>::Scalar::zero()];
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit::default().output(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
// produce the prover and verifier keys for compressed snark
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark);
assert!(res.is_ok());
let compressed_snark = res.unwrap();
// verify the compressed SNARK
let res = compressed_snark.verify(
&vk,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
}
#[test]
fn test_ivc_nontrivial_with_spark_compression() {
let circuit_primary = TrivialTestCircuit::default();
let circuit_secondary = CubicCircuit::default();
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary.clone(), circuit_secondary.clone());
let num_steps = 3;
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>,
> = None;
for _i in 0..num_steps {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
// sanity: check the claimed output with a direct computation of the same
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
let mut zn_secondary_direct = vec![<G2 as Group>::Scalar::zero()];
for _i in 0..num_steps {
zn_secondary_direct = CubicCircuit::default().output(&zn_secondary_direct);
}
assert_eq!(zn_secondary, zn_secondary_direct);
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(2460515u64)]);
// run the compressed snark with Spark compiler
type S1Prime = spartan::pp::RelaxedR1CSSNARK<G1, EE1>;
type S2Prime = spartan::pp::RelaxedR1CSSNARK<G2, EE2>;
// produce the prover and verifier keys for compressed snark
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1Prime, S2Prime>::setup(&pp).unwrap();
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1Prime, S2Prime>::prove(&pp, &pk, &recursive_snark);
assert!(res.is_ok());
let compressed_snark = res.unwrap();
// verify the compressed SNARK
let res = compressed_snark.verify(
&vk,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
}
#[test]
fn test_ivc_nondet_with_compression() {
// y is a non-deterministic advice representing the fifth root of the input at a step.
#[derive(Clone, Debug)]
struct FifthRootCheckingCircuit<F: PrimeField> {
y: F,
}
impl<F> FifthRootCheckingCircuit<F>
where
F: PrimeField,
{
fn new(num_steps: usize) -> (Vec<F>, Vec<Self>) {
let mut powers = Vec::new();
let rng = &mut rand::rngs::OsRng;
let mut seed = F::random(rng);
for _i in 0..num_steps + 1 {
let mut power = seed;
power = power.square();
power = power.square();
power *= seed;
powers.push(Self { y: power });
seed = power;
}
// reverse the powers to get roots
let roots = powers.into_iter().rev().collect::<Vec<Self>>();
(vec![roots[0].y], roots[1..].to_vec())
}
}
impl<F> StepCircuit<F> for FifthRootCheckingCircuit<F>
where
F: PrimeField,
{
fn arity(&self) -> usize {
1
}
fn synthesize<CS: ConstraintSystem<F>>(
&self,
cs: &mut CS,
z: &[AllocatedNum<F>],
) -> Result<Vec<AllocatedNum<F>>, SynthesisError> {
let x = &z[0];
// we allocate a variable and set it to the provided non-deterministic advice.
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(self.y))?;
// We now check if y = x^{1/5} by checking if y^5 = x
let y_sq = y.square(cs.namespace(|| "y_sq"))?;
let y_quad = y_sq.square(cs.namespace(|| "y_quad"))?;
let y_pow_5 = y_quad.mul(cs.namespace(|| "y_fifth"), &y)?;
cs.enforce(
|| "y^5 = x",
|lc| lc + y_pow_5.get_variable(),
|lc| lc + CS::one(),
|lc| lc + x.get_variable(),
);
Ok(vec![y])
}
fn output(&self, z: &[F]) -> Vec<F> {
// sanity check
let x = z[0];
let y_pow_5 = {
let y = self.y;
let y_sq = y.square();
let y_quad = y_sq.square();
y_quad * self.y
};
assert_eq!(x, y_pow_5);
// return non-deterministic advice
// as the output of the step
vec![self.y]
}
}
let circuit_primary = FifthRootCheckingCircuit {
y: <G1 as Group>::Scalar::zero(),
};
let circuit_secondary = TrivialTestCircuit::default();
// produce public parameters
let pp = PublicParams::<
G1,
G2,
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>::setup(circuit_primary, circuit_secondary.clone());
let num_steps = 3;
// produce non-deterministic advice
let (z0_primary, roots) = FifthRootCheckingCircuit::new(num_steps);
let z0_secondary = vec![<G2 as Group>::Scalar::zero()];
// produce a recursive SNARK
let mut recursive_snark: Option<
RecursiveSNARK<
G1,
G2,
FifthRootCheckingCircuit<<G1 as Group>::Scalar>,
TrivialTestCircuit<<G2 as Group>::Scalar>,
>,
> = None;
for circuit_primary in roots.iter().take(num_steps) {
let res = RecursiveSNARK::prove_step(
&pp,
recursive_snark,
circuit_primary.clone(),
circuit_secondary.clone(),
z0_primary.clone(),
z0_secondary.clone(),
);
assert!(res.is_ok());
recursive_snark = Some(res.unwrap());
}
assert!(recursive_snark.is_some());
let recursive_snark = recursive_snark.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(&pp, num_steps, z0_primary.clone(), z0_secondary.clone());
assert!(res.is_ok());
// produce the prover and verifier keys for compressed snark
let (pk, vk) = CompressedSNARK::<_, _, _, _, S1, S2>::setup(&pp).unwrap();
// produce a compressed SNARK
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &pk, &recursive_snark);
assert!(res.is_ok());
let compressed_snark = res.unwrap();
// verify the compressed SNARK
let res = compressed_snark.verify(&vk, num_steps, z0_primary, z0_secondary);
assert!(res.is_ok());
}
#[test]
fn test_ivc_base() {
// produce public parameters
let pp = PublicParams::<
G1,
G2,
TrivialTestCircuit<<G1 as Group>::Scalar>,
CubicCircuit<<G2 as Group>::Scalar>,
>::setup(TrivialTestCircuit::default(), CubicCircuit::default());
let num_steps = 1;
// produce a recursive SNARK
let res = RecursiveSNARK::prove_step(
&pp,
None,
TrivialTestCircuit::default(),
CubicCircuit::default(),
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let recursive_snark = res.unwrap();
// verify the recursive SNARK
let res = recursive_snark.verify(
&pp,
num_steps,
vec![<G1 as Group>::Scalar::one()],
vec![<G2 as Group>::Scalar::zero()],
);
assert!(res.is_ok());
let (zn_primary, zn_secondary) = res.unwrap();
assert_eq!(zn_primary, vec![<G1 as Group>::Scalar::one()]);
assert_eq!(zn_secondary, vec![<G2 as Group>::Scalar::from(5u64)]);
}
}