//! This library implements core components of Nova.
|
|
#![allow(non_snake_case)]
|
|
#![allow(clippy::type_complexity)]
|
|
#![feature(test)]
|
|
#![deny(missing_docs)]
|
|
|
|
mod commitments;
|
|
|
|
pub mod bellperson;
|
|
pub mod errors;
|
|
pub mod pasta;
|
|
pub mod r1cs;
|
|
pub mod traits;
|
|
|
|
use std::marker::PhantomData;
|
|
|
|
use commitments::{AppendToTranscriptTrait, CompressedCommitment};
|
|
use errors::NovaError;
|
|
use merlin::Transcript;
|
|
use r1cs::{
|
|
R1CSGens, R1CSInstance, R1CSShape, R1CSWitness, RelaxedR1CSInstance, RelaxedR1CSWitness,
|
|
};
|
|
use traits::{ChallengeTrait, Group};
|
|
|
|
/// A SNARK that holds the proof of a step of an incremental computation
|
|
pub struct StepSNARK<G: Group> {
|
|
comm_T: CompressedCommitment<G::CompressedGroupElement>,
|
|
_p: PhantomData<G>,
|
|
}
|
|
|
|
impl<G: Group> StepSNARK<G> {
|
|
fn protocol_name() -> &'static [u8] {
|
|
b"NovaStepSNARK"
|
|
}
|
|
|
|
/// Takes as input a Relaxed R1CS instance-witness tuple `(U1, W1)` and
|
|
/// an R1CS instance-witness tuple `(U2, W2)` with the same structure `shape`
|
|
/// and defined with respect to the same `gens`, and outputs
|
|
/// a folded Relaxed R1CS instance-witness tuple `(U, W)` of the same shape `shape`,
|
|
/// with the guarantee that the folded witness `W` satisfies the folded instance `U`
|
|
/// if and only if `W1` satisfies `U1` and `W2` satisfies `U2`.
|
|
pub fn prove(
|
|
gens: &R1CSGens<G>,
|
|
S: &R1CSShape<G>,
|
|
U1: &RelaxedR1CSInstance<G>,
|
|
W1: &RelaxedR1CSWitness<G>,
|
|
U2: &R1CSInstance<G>,
|
|
W2: &R1CSWitness<G>,
|
|
transcript: &mut Transcript,
|
|
) -> Result<
|
|
(
|
|
StepSNARK<G>,
|
|
(RelaxedR1CSInstance<G>, RelaxedR1CSWitness<G>),
|
|
),
|
|
NovaError,
|
|
> {
|
|
// append the protocol name to the transcript
|
|
//transcript.append_protocol_name(StepSNARK::protocol_name());
|
|
transcript.append_message(b"protocol-name", StepSNARK::<G>::protocol_name());
|
|
|
|
// compute a commitment to the cross-term
|
|
let (T, comm_T) = S.commit_T(gens, U1, W1, U2, W2)?;
|
|
|
|
// append `comm_T` to the transcript and obtain a challenge
|
|
comm_T.append_to_transcript(b"comm_T", transcript);
|
|
|
|
// compute a challenge from the transcript
|
|
let r = G::Scalar::challenge(b"r", transcript);
|
|
|
|
// fold the instance using `r` and `comm_T`
|
|
let U = U1.fold(U2, &comm_T, &r)?;
|
|
|
|
// fold the witness using `r` and `T`
|
|
let W = W1.fold(W2, &T, &r)?;
|
|
|
|
// return the folded instance and witness
|
|
Ok((
|
|
StepSNARK {
|
|
comm_T,
|
|
_p: Default::default(),
|
|
},
|
|
(U, W),
|
|
))
|
|
}
|
|
|
|
/// Takes as input a relaxed R1CS instance `U1` and and R1CS instance `U2`
|
|
/// with the same shape and defined with respect to the same parameters,
|
|
/// and outputs a folded instance `U` with the same shape,
|
|
/// with the guarantee that the folded instance `U`
|
|
/// if and only if `U1` and `U2` are satisfiable.
|
|
pub fn verify(
|
|
&self,
|
|
U1: &RelaxedR1CSInstance<G>,
|
|
U2: &R1CSInstance<G>,
|
|
transcript: &mut Transcript,
|
|
) -> Result<RelaxedR1CSInstance<G>, NovaError> {
|
|
// append the protocol name to the transcript
|
|
transcript.append_message(b"protocol-name", StepSNARK::<G>::protocol_name());
|
|
|
|
// append `comm_T` to the transcript and obtain a challenge
|
|
self.comm_T.append_to_transcript(b"comm_T", transcript);
|
|
|
|
// compute a challenge from the transcript
|
|
let r = G::Scalar::challenge(b"r", transcript);
|
|
|
|
// fold the instance using `r` and `comm_T`
|
|
let U = U1.fold(U2, &self.comm_T, &r)?;
|
|
|
|
// return the folded instance
|
|
Ok(U)
|
|
}
|
|
}
|
|
|
|
/// A SNARK that holds the proof of the final step of an incremental computation
|
|
pub struct FinalSNARK<G: Group> {
|
|
W: RelaxedR1CSWitness<G>,
|
|
}
|
|
|
|
impl<G: Group> FinalSNARK<G> {
|
|
/// Produces a proof of a instance given its satisfying witness `W`.
|
|
pub fn prove(W: &RelaxedR1CSWitness<G>) -> Result<FinalSNARK<G>, NovaError> {
|
|
Ok(FinalSNARK { W: W.clone() })
|
|
}
|
|
|
|
/// Verifies the proof of a folded instance `U` given its shape `S` public parameters `gens`
|
|
pub fn verify(
|
|
&self,
|
|
gens: &R1CSGens<G>,
|
|
S: &R1CSShape<G>,
|
|
U: &RelaxedR1CSInstance<G>,
|
|
) -> Result<(), NovaError> {
|
|
// check that the witness is a valid witness to the folded instance `U`
|
|
S.is_sat_relaxed(gens, U, &self.W)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use crate::traits::PrimeField;
|
|
use rand::rngs::OsRng;
|
|
|
|
type S = pasta_curves::pallas::Scalar;
|
|
type G = pasta_curves::pallas::Point;
|
|
|
|
#[test]
|
|
fn test_tiny_r1cs() {
|
|
let one = S::one();
|
|
let (num_cons, num_vars, num_io, A, B, C) = {
|
|
let num_cons = 4;
|
|
let num_vars = 4;
|
|
let num_io = 2;
|
|
|
|
// Consider a cubic equation: `x^3 + x + 5 = y`, where `x` and `y` are respectively the input and output.
|
|
// The R1CS for this problem consists of the following constraints:
|
|
// `I0 * I0 - Z0 = 0`
|
|
// `Z0 * I0 - Z1 = 0`
|
|
// `(Z1 + I0) * 1 - Z2 = 0`
|
|
// `(Z2 + 5) * 1 - I1 = 0`
|
|
|
|
// Relaxed R1CS is a set of three sparse matrices (A B C), where there is a row for every
|
|
// constraint and a column for every entry in z = (vars, u, inputs)
|
|
// An R1CS instance is satisfiable iff:
|
|
// Az \circ Bz = u \cdot Cz + E, where z = (vars, 1, inputs)
|
|
let mut A: Vec<(usize, usize, S)> = Vec::new();
|
|
let mut B: Vec<(usize, usize, S)> = Vec::new();
|
|
let mut C: Vec<(usize, usize, S)> = Vec::new();
|
|
|
|
// constraint 0 entries in (A,B,C)
|
|
// `I0 * I0 - Z0 = 0`
|
|
A.push((0, num_vars + 1, one));
|
|
B.push((0, num_vars + 1, one));
|
|
C.push((0, 0, one));
|
|
|
|
// constraint 1 entries in (A,B,C)
|
|
// `Z0 * I0 - Z1 = 0`
|
|
A.push((1, 0, one));
|
|
B.push((1, num_vars + 1, one));
|
|
C.push((1, 1, one));
|
|
|
|
// constraint 2 entries in (A,B,C)
|
|
// `(Z1 + I0) * 1 - Z2 = 0`
|
|
A.push((2, 1, one));
|
|
A.push((2, num_vars + 1, one));
|
|
B.push((2, num_vars, one));
|
|
C.push((2, 2, one));
|
|
|
|
// constraint 3 entries in (A,B,C)
|
|
// `(Z2 + 5) * 1 - I1 = 0`
|
|
A.push((3, 2, one));
|
|
A.push((3, num_vars, one + one + one + one + one));
|
|
B.push((3, num_vars, one));
|
|
C.push((3, num_vars + 2, one));
|
|
|
|
(num_cons, num_vars, num_io, A, B, C)
|
|
};
|
|
|
|
// create a shape object
|
|
let S = {
|
|
let res = R1CSShape::new(num_cons, num_vars, num_io, &A, &B, &C);
|
|
assert!(res.is_ok());
|
|
res.unwrap()
|
|
};
|
|
|
|
// generate generators
|
|
let gens = R1CSGens::new(num_cons, num_vars);
|
|
|
|
let rand_inst_witness_generator =
|
|
|gens: &R1CSGens<G>, I: &S| -> (S, R1CSInstance<G>, R1CSWitness<G>) {
|
|
let i0 = *I;
|
|
|
|
// compute a satisfying (vars, X) tuple
|
|
let (O, vars, X) = {
|
|
let z0 = i0 * i0; // constraint 0
|
|
let z1 = i0 * z0; // constraint 1
|
|
let z2 = z1 + i0; // constraint 2
|
|
let i1 = z2 + one + one + one + one + one; // constraint 3
|
|
|
|
// store the witness and IO for the instance
|
|
let W = vec![z0, z1, z2, S::zero()];
|
|
let X = vec![i0, i1];
|
|
(i1, W, X)
|
|
};
|
|
|
|
let W = {
|
|
let res = R1CSWitness::new(&S, &vars);
|
|
assert!(res.is_ok());
|
|
res.unwrap()
|
|
};
|
|
let U = {
|
|
let comm_W = W.commit(gens);
|
|
let res = R1CSInstance::new(&S, &comm_W, &X);
|
|
assert!(res.is_ok());
|
|
res.unwrap()
|
|
};
|
|
|
|
// check that generated instance is satisfiable
|
|
assert!(S.is_sat(gens, &U, &W).is_ok());
|
|
|
|
(O, U, W)
|
|
};
|
|
|
|
let mut csprng: OsRng = OsRng;
|
|
let I = S::random(&mut csprng); // the first input is picked randomly for the first instance
|
|
let (O, U1, W1) = rand_inst_witness_generator(&gens, &I);
|
|
let (_O, U2, W2) = rand_inst_witness_generator(&gens, &O);
|
|
|
|
// produce a default running instance
|
|
let mut r_W = RelaxedR1CSWitness::default(&S);
|
|
let mut r_U = RelaxedR1CSInstance::default(&gens, &S);
|
|
|
|
// produce a step SNARK with (W1, U1) as the first incoming witness-instance pair
|
|
let mut prover_transcript = Transcript::new(b"StepSNARKExample");
|
|
let res = StepSNARK::prove(&gens, &S, &r_U, &r_W, &U1, &W1, &mut prover_transcript);
|
|
assert!(res.is_ok());
|
|
let (step_snark, (_U, W)) = res.unwrap();
|
|
|
|
// verify the step SNARK with U1 as the first incoming instance
|
|
let mut verifier_transcript = Transcript::new(b"StepSNARKExample");
|
|
let res = step_snark.verify(&r_U, &U1, &mut verifier_transcript);
|
|
assert!(res.is_ok());
|
|
let U = res.unwrap();
|
|
|
|
assert_eq!(U, _U);
|
|
|
|
// update the running witness and instance
|
|
r_W = W;
|
|
r_U = U;
|
|
|
|
// produce a step SNARK with (W2, U2) as the second incoming witness-instance pair
|
|
let res = StepSNARK::prove(&gens, &S, &r_U, &r_W, &U2, &W2, &mut prover_transcript);
|
|
assert!(res.is_ok());
|
|
let (step_snark, (_U, W)) = res.unwrap();
|
|
|
|
// verify the step SNARK with U1 as the first incoming instance
|
|
let res = step_snark.verify(&r_U, &U2, &mut verifier_transcript);
|
|
assert!(res.is_ok());
|
|
let U = res.unwrap();
|
|
|
|
assert_eq!(U, _U);
|
|
|
|
// update the running witness and instance
|
|
r_W = W;
|
|
r_U = U;
|
|
|
|
// produce a final SNARK
|
|
let res = FinalSNARK::prove(&r_W);
|
|
assert!(res.is_ok());
|
|
let final_snark = res.unwrap();
|
|
// verify the final SNARK
|
|
let res = final_snark.verify(&gens, &S, &r_U);
|
|
assert!(res.is_ok());
|
|
}
|
|
}
|