You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

362 lines
12 KiB

//! This module implements RelaxedR1CSSNARKTrait using Spartan that is generic
//! over the polynomial commitment and evaluation argument (i.e., a PCS)
pub mod polynomial;
mod sumcheck;
use crate::{
errors::NovaError,
r1cs::{R1CSGens, R1CSShape, RelaxedR1CSInstance, RelaxedR1CSWitness},
traits::{
evaluation::EvaluationEngineTrait,
snark::{ProverKeyTrait, RelaxedR1CSSNARKTrait, VerifierKeyTrait},
AppendToTranscriptTrait, ChallengeTrait, Group,
},
};
use ff::Field;
use itertools::concat;
use merlin::Transcript;
use polynomial::{EqPolynomial, MultilinearPolynomial, SparsePolynomial};
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use sumcheck::SumcheckProof;
/// A type that represents the prover's key
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct ProverKey<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
gens: EE::EvaluationGens,
S: R1CSShape<G>,
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> ProverKeyTrait<G> for ProverKey<G, EE> {
fn new(gens: &R1CSGens<G>, S: &R1CSShape<G>) -> Self {
ProverKey {
gens: EE::setup(&gens.gens),
S: S.clone(),
}
}
}
/// A type that represents the verifier's key
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct VerifierKey<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
gens: EE::EvaluationGens,
S: R1CSShape<G>,
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> VerifierKeyTrait<G>
for VerifierKey<G, EE>
{
fn new(gens: &R1CSGens<G>, S: &R1CSShape<G>) -> Self {
VerifierKey {
gens: EE::setup(&gens.gens),
S: S.clone(),
}
}
}
/// A succinct proof of knowledge of a witness to a relaxed R1CS instance
/// The proof is produced using Spartan's combination of the sum-check and
/// the commitment to a vector viewed as a polynomial commitment
#[derive(Serialize, Deserialize)]
#[serde(bound = "")]
pub struct RelaxedR1CSSNARK<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> {
sc_proof_outer: SumcheckProof<G>,
claims_outer: (G::Scalar, G::Scalar, G::Scalar),
sc_proof_inner: SumcheckProof<G>,
eval_E: G::Scalar,
eval_W: G::Scalar,
eval_arg: EE::EvaluationArgument,
}
impl<G: Group, EE: EvaluationEngineTrait<G, CE = G::CE>> RelaxedR1CSSNARKTrait<G>
for RelaxedR1CSSNARK<G, EE>
{
type ProverKey = ProverKey<G, EE>;
type VerifierKey = VerifierKey<G, EE>;
/// produces a succinct proof of satisfiability of a RelaxedR1CS instance
fn prove(
pk: &Self::ProverKey,
U: &RelaxedR1CSInstance<G>,
W: &RelaxedR1CSWitness<G>,
) -> Result<Self, NovaError> {
let mut transcript = Transcript::new(b"RelaxedR1CSSNARK");
// sanity check that R1CSShape has certain size characteristics
assert_eq!(pk.S.num_cons.next_power_of_two(), pk.S.num_cons);
assert_eq!(pk.S.num_vars.next_power_of_two(), pk.S.num_vars);
assert_eq!(pk.S.num_io.next_power_of_two(), pk.S.num_io);
assert!(pk.S.num_io < pk.S.num_vars);
// append the R1CSShape and RelaxedR1CSInstance to the transcript
pk.S.append_to_transcript(b"S", &mut transcript);
U.append_to_transcript(b"U", &mut transcript);
// compute the full satisfying assignment by concatenating W.W, U.u, and U.X
let mut z = concat(vec![W.W.clone(), vec![U.u], U.X.clone()]);
let (num_rounds_x, num_rounds_y) = (
(pk.S.num_cons as f64).log2() as usize,
((pk.S.num_vars as f64).log2() as usize + 1),
);
// outer sum-check
let tau = (0..num_rounds_x)
.map(|_i| G::Scalar::challenge(b"challenge_tau", &mut transcript))
.collect();
let mut poly_tau = MultilinearPolynomial::new(EqPolynomial::new(tau).evals());
let (mut poly_Az, mut poly_Bz, poly_Cz, mut poly_uCz_E) = {
let (poly_Az, poly_Bz, poly_Cz) = pk.S.multiply_vec(&z)?;
let poly_uCz_E = (0..pk.S.num_cons)
.map(|i| U.u * poly_Cz[i] + W.E[i])
.collect::<Vec<G::Scalar>>();
(
MultilinearPolynomial::new(poly_Az),
MultilinearPolynomial::new(poly_Bz),
MultilinearPolynomial::new(poly_Cz),
MultilinearPolynomial::new(poly_uCz_E),
)
};
let comb_func_outer =
|poly_A_comp: &G::Scalar,
poly_B_comp: &G::Scalar,
poly_C_comp: &G::Scalar,
poly_D_comp: &G::Scalar|
-> G::Scalar { *poly_A_comp * (*poly_B_comp * *poly_C_comp - *poly_D_comp) };
let (sc_proof_outer, r_x, claims_outer) = SumcheckProof::prove_cubic_with_additive_term(
&G::Scalar::zero(), // claim is zero
num_rounds_x,
&mut poly_tau,
&mut poly_Az,
&mut poly_Bz,
&mut poly_uCz_E,
comb_func_outer,
&mut transcript,
);
// claims from the end of sum-check
let (claim_Az, claim_Bz): (G::Scalar, G::Scalar) = (claims_outer[1], claims_outer[2]);
claim_Az.append_to_transcript(b"claim_Az", &mut transcript);
claim_Bz.append_to_transcript(b"claim_Bz", &mut transcript);
let claim_Cz = poly_Cz.evaluate(&r_x);
let eval_E = MultilinearPolynomial::new(W.E.clone()).evaluate(&r_x);
claim_Cz.append_to_transcript(b"claim_Cz", &mut transcript);
eval_E.append_to_transcript(b"eval_E", &mut transcript);
// inner sum-check
let r_A = G::Scalar::challenge(b"challenge_rA", &mut transcript);
let r_B = G::Scalar::challenge(b"challenge_rB", &mut transcript);
let r_C = G::Scalar::challenge(b"challenge_rC", &mut transcript);
let claim_inner_joint = r_A * claim_Az + r_B * claim_Bz + r_C * claim_Cz;
let poly_ABC = {
// compute the initial evaluation table for R(\tau, x)
let evals_rx = EqPolynomial::new(r_x.clone()).evals();
// Bounds "row" variables of (A, B, C) matrices viewed as 2d multilinear polynomials
let compute_eval_table_sparse =
|S: &R1CSShape<G>, rx: &[G::Scalar]| -> (Vec<G::Scalar>, Vec<G::Scalar>, Vec<G::Scalar>) {
assert_eq!(rx.len(), S.num_cons);
let inner = |M: &Vec<(usize, usize, G::Scalar)>, M_evals: &mut Vec<G::Scalar>| {
for (row, col, val) in M {
M_evals[*col] += rx[*row] * val;
}
};
let (A_evals, (B_evals, C_evals)) = rayon::join(
|| {
let mut A_evals: Vec<G::Scalar> = vec![G::Scalar::zero(); 2 * S.num_vars];
inner(&S.A, &mut A_evals);
A_evals
},
|| {
rayon::join(
|| {
let mut B_evals: Vec<G::Scalar> = vec![G::Scalar::zero(); 2 * S.num_vars];
inner(&S.B, &mut B_evals);
B_evals
},
|| {
let mut C_evals: Vec<G::Scalar> = vec![G::Scalar::zero(); 2 * S.num_vars];
inner(&S.C, &mut C_evals);
C_evals
},
)
},
);
(A_evals, B_evals, C_evals)
};
let (evals_A, evals_B, evals_C) = compute_eval_table_sparse(&pk.S, &evals_rx);
assert_eq!(evals_A.len(), evals_B.len());
assert_eq!(evals_A.len(), evals_C.len());
(0..evals_A.len())
.into_par_iter()
.map(|i| r_A * evals_A[i] + r_B * evals_B[i] + r_C * evals_C[i])
.collect::<Vec<G::Scalar>>()
};
let poly_z = {
z.resize(pk.S.num_vars * 2, G::Scalar::zero());
z
};
let comb_func = |poly_A_comp: &G::Scalar, poly_B_comp: &G::Scalar| -> G::Scalar {
*poly_A_comp * *poly_B_comp
};
let (sc_proof_inner, r_y, _claims_inner) = SumcheckProof::prove_quad(
&claim_inner_joint,
num_rounds_y,
&mut MultilinearPolynomial::new(poly_ABC),
&mut MultilinearPolynomial::new(poly_z),
comb_func,
&mut transcript,
);
let eval_W = MultilinearPolynomial::new(W.W.clone()).evaluate(&r_y[1..]);
eval_W.append_to_transcript(b"eval_W", &mut transcript);
let eval_arg = EE::prove_batch(
&pk.gens,
&mut transcript,
&[U.comm_E, U.comm_W],
&[W.E.clone(), W.W.clone()],
&[r_x, r_y[1..].to_vec()],
&[eval_E, eval_W],
)?;
Ok(RelaxedR1CSSNARK {
sc_proof_outer,
claims_outer: (claim_Az, claim_Bz, claim_Cz),
sc_proof_inner,
eval_W,
eval_E,
eval_arg,
})
}
/// verifies a proof of satisfiability of a RelaxedR1CS instance
fn verify(&self, vk: &Self::VerifierKey, U: &RelaxedR1CSInstance<G>) -> Result<(), NovaError> {
let mut transcript = Transcript::new(b"RelaxedR1CSSNARK");
// append the R1CSShape and RelaxedR1CSInstance to the transcript
vk.S.append_to_transcript(b"S", &mut transcript);
U.append_to_transcript(b"U", &mut transcript);
let (num_rounds_x, num_rounds_y) = (
(vk.S.num_cons as f64).log2() as usize,
((vk.S.num_vars as f64).log2() as usize + 1),
);
// outer sum-check
let tau = (0..num_rounds_x)
.map(|_i| G::Scalar::challenge(b"challenge_tau", &mut transcript))
.collect::<Vec<G::Scalar>>();
let (claim_outer_final, r_x) =
self
.sc_proof_outer
.verify(G::Scalar::zero(), num_rounds_x, 3, &mut transcript)?;
// verify claim_outer_final
let (claim_Az, claim_Bz, claim_Cz) = self.claims_outer;
let taus_bound_rx = EqPolynomial::new(tau).evaluate(&r_x);
let claim_outer_final_expected =
taus_bound_rx * (claim_Az * claim_Bz - U.u * claim_Cz - self.eval_E);
if claim_outer_final != claim_outer_final_expected {
return Err(NovaError::InvalidSumcheckProof);
}
self
.claims_outer
.0
.append_to_transcript(b"claim_Az", &mut transcript);
self
.claims_outer
.1
.append_to_transcript(b"claim_Bz", &mut transcript);
self
.claims_outer
.2
.append_to_transcript(b"claim_Cz", &mut transcript);
self.eval_E.append_to_transcript(b"eval_E", &mut transcript);
// inner sum-check
let r_A = G::Scalar::challenge(b"challenge_rA", &mut transcript);
let r_B = G::Scalar::challenge(b"challenge_rB", &mut transcript);
let r_C = G::Scalar::challenge(b"challenge_rC", &mut transcript);
let claim_inner_joint =
r_A * self.claims_outer.0 + r_B * self.claims_outer.1 + r_C * self.claims_outer.2;
let (claim_inner_final, r_y) =
self
.sc_proof_inner
.verify(claim_inner_joint, num_rounds_y, 2, &mut transcript)?;
// verify claim_inner_final
let eval_Z = {
let eval_X = {
// constant term
let mut poly_X = vec![(0, U.u)];
//remaining inputs
poly_X.extend(
(0..U.X.len())
.map(|i| (i + 1, U.X[i]))
.collect::<Vec<(usize, G::Scalar)>>(),
);
SparsePolynomial::new((vk.S.num_vars as f64).log2() as usize, poly_X).evaluate(&r_y[1..])
};
(G::Scalar::one() - r_y[0]) * self.eval_W + r_y[0] * eval_X
};
let evaluate_as_sparse_polynomial = |S: &R1CSShape<G>,
r_x: &[G::Scalar],
r_y: &[G::Scalar]|
-> (G::Scalar, G::Scalar, G::Scalar) {
let evaluate_with_table =
|M: &[(usize, usize, G::Scalar)], T_x: &[G::Scalar], T_y: &[G::Scalar]| -> G::Scalar {
(0..M.len())
.map(|i| {
let (row, col, val) = M[i];
T_x[row] * T_y[col] * val
})
.fold(G::Scalar::zero(), |acc, x| acc + x)
};
let T_x = EqPolynomial::new(r_x.to_vec()).evals();
let T_y = EqPolynomial::new(r_y.to_vec()).evals();
let eval_A_r = evaluate_with_table(&S.A, &T_x, &T_y);
let eval_B_r = evaluate_with_table(&S.B, &T_x, &T_y);
let eval_C_r = evaluate_with_table(&S.C, &T_x, &T_y);
(eval_A_r, eval_B_r, eval_C_r)
};
let (eval_A_r, eval_B_r, eval_C_r) = evaluate_as_sparse_polynomial(&vk.S, &r_x, &r_y);
let claim_inner_final_expected = (r_A * eval_A_r + r_B * eval_B_r + r_C * eval_C_r) * eval_Z;
if claim_inner_final != claim_inner_final_expected {
return Err(NovaError::InvalidSumcheckProof);
}
// verify eval_W and eval_E
self.eval_W.append_to_transcript(b"eval_W", &mut transcript); //eval_E is already in the transcript
EE::verify_batch(
&vk.gens,
&mut transcript,
&[U.comm_E, U.comm_W],
&[r_x, r_y[1..].to_vec()],
&[self.eval_E, self.eval_W],
&self.eval_arg,
)?;
Ok(())
}
}