You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

425 lines
12 KiB

#![allow(clippy::too_many_arguments)]
use crate::commitments::{CommitGens, CommitTrait, Commitment, CompressedCommitment};
use crate::errors::NovaError;
use crate::traits::{AppendToTranscriptTrait, ChallengeTrait, Group};
use core::{cmp::max, iter};
use ff::Field;
use merlin::Transcript;
use rayon::prelude::*;
use std::marker::PhantomData;
pub fn inner_product<T>(a: &[T], b: &[T]) -> T
where
T: Field + Send + Sync,
{
assert_eq!(a.len(), b.len());
(0..a.len())
.into_par_iter()
.map(|i| a[i] * b[i])
.reduce(T::zero, |x, y| x + y)
}
/// An inner product instance consists of a commitment to a vector `a` and another vector `b`
/// and the claim that c = <a, b>.
pub struct InnerProductInstance<G: Group> {
comm_a_vec: Commitment<G>,
b_vec: Vec<G::Scalar>,
c: G::Scalar,
}
impl<G: Group> InnerProductInstance<G> {
pub fn new(comm_a_vec: &Commitment<G>, b_vec: &[G::Scalar], c: &G::Scalar) -> Self {
InnerProductInstance {
comm_a_vec: *comm_a_vec,
b_vec: b_vec.to_vec(),
c: *c,
}
}
pub fn pad(&self, n: usize) -> InnerProductInstance<G> {
let mut b_vec = self.b_vec.clone();
b_vec.resize(n, G::Scalar::zero());
InnerProductInstance {
comm_a_vec: self.comm_a_vec,
b_vec,
c: self.c,
}
}
}
pub struct InnerProductWitness<G: Group> {
a_vec: Vec<G::Scalar>,
}
impl<G: Group> InnerProductWitness<G> {
pub fn new(a_vec: &[G::Scalar]) -> Self {
InnerProductWitness {
a_vec: a_vec.to_vec(),
}
}
pub fn pad(&self, n: usize) -> InnerProductWitness<G> {
let mut a_vec = self.a_vec.clone();
a_vec.resize(n, G::Scalar::zero());
InnerProductWitness { a_vec }
}
}
/// A non-interactive folding scheme (NIFS) for inner product relations
pub struct NIFSForInnerProduct<G: Group> {
cross_term: G::Scalar,
}
impl<G: Group> NIFSForInnerProduct<G> {
pub fn protocol_name() -> &'static [u8] {
b"NIFSForInnerProduct"
}
pub fn prove(
U1: &InnerProductInstance<G>,
W1: &InnerProductWitness<G>,
U2: &InnerProductInstance<G>,
W2: &InnerProductWitness<G>,
transcript: &mut Transcript,
) -> (Self, InnerProductInstance<G>, InnerProductWitness<G>) {
transcript.append_message(b"protocol-name", Self::protocol_name());
// pad the instances and witness so they are of the same length
let U1 = U1.pad(max(U1.b_vec.len(), U2.b_vec.len()));
let U2 = U2.pad(max(U1.b_vec.len(), U2.b_vec.len()));
let W1 = W1.pad(max(U1.b_vec.len(), U2.b_vec.len()));
let W2 = W2.pad(max(U1.b_vec.len(), U2.b_vec.len()));
// add the two commitments and two public vectors to the transcript
U1.comm_a_vec
.append_to_transcript(b"U1_comm_a_vec", transcript);
U1.b_vec.append_to_transcript(b"U1_b_vec", transcript);
U2.comm_a_vec
.append_to_transcript(b"U2_comm_a_vec", transcript);
U2.b_vec.append_to_transcript(b"U2_b_vec", transcript);
// compute the cross-term
let cross_term = inner_product(&W1.a_vec, &U2.b_vec) + inner_product(&W2.a_vec, &U1.b_vec);
// add the cross-term to the transcript
cross_term.append_to_transcript(b"cross_term", transcript);
// obtain a random challenge
let r = G::Scalar::challenge(b"r", transcript);
// fold the vectors and their inner product
let a_vec = W1
.a_vec
.par_iter()
.zip(W2.a_vec.par_iter())
.map(|(x1, x2)| *x1 + r * x2)
.collect::<Vec<G::Scalar>>();
let b_vec = U1
.b_vec
.par_iter()
.zip(U2.b_vec.par_iter())
.map(|(a1, a2)| *a1 + r * a2)
.collect::<Vec<G::Scalar>>();
let c = U1.c + r * r * U2.c + r * cross_term;
let comm_a_vec = U1.comm_a_vec + U2.comm_a_vec * r;
let W = InnerProductWitness { a_vec };
let U = InnerProductInstance {
comm_a_vec,
b_vec,
c,
};
(NIFSForInnerProduct { cross_term }, U, W)
}
pub fn verify(
&self,
U1: &InnerProductInstance<G>,
U2: &InnerProductInstance<G>,
transcript: &mut Transcript,
) -> InnerProductInstance<G> {
transcript.append_message(b"protocol-name", Self::protocol_name());
// pad the instances so they are of the same length
let U1 = U1.pad(max(U1.b_vec.len(), U2.b_vec.len()));
let U2 = U2.pad(max(U1.b_vec.len(), U2.b_vec.len()));
// add the two commitments and two public vectors to the transcript
U1.comm_a_vec
.append_to_transcript(b"U1_comm_a_vec", transcript);
U1.b_vec.append_to_transcript(b"U1_b_vec", transcript);
U2.comm_a_vec
.append_to_transcript(b"U2_comm_a_vec", transcript);
U2.b_vec.append_to_transcript(b"U2_b_vec", transcript);
// add the cross-term to the transcript
self
.cross_term
.append_to_transcript(b"cross_term", transcript);
// obtain a random challenge
let r = G::Scalar::challenge(b"r", transcript);
// fold the vectors and their inner product
let b_vec = U1
.b_vec
.par_iter()
.zip(U2.b_vec.par_iter())
.map(|(a1, a2)| *a1 + r * a2)
.collect::<Vec<G::Scalar>>();
let c = U1.c + r * r * U2.c + r * self.cross_term;
let comm_a_vec = U1.comm_a_vec + U2.comm_a_vec * r;
InnerProductInstance {
comm_a_vec,
b_vec,
c,
}
}
}
/// An inner product argument
#[derive(Debug)]
pub struct InnerProductArgument<G: Group> {
L_vec: Vec<CompressedCommitment<G::CompressedGroupElement>>,
R_vec: Vec<CompressedCommitment<G::CompressedGroupElement>>,
a_hat: G::Scalar,
_p: PhantomData<G>,
}
impl<G: Group> InnerProductArgument<G> {
fn protocol_name() -> &'static [u8] {
b"inner product argument"
}
pub fn prove(
gens: &CommitGens<G>,
gens_c: &CommitGens<G>,
U: &InnerProductInstance<G>,
W: &InnerProductWitness<G>,
transcript: &mut Transcript,
) -> Result<Self, NovaError> {
transcript.append_message(b"protocol-name", Self::protocol_name());
if U.b_vec.len() != W.a_vec.len() {
return Err(NovaError::InvalidInputLength);
}
U.comm_a_vec.append_to_transcript(b"comm_a_vec", transcript);
U.b_vec.append_to_transcript(b"b_vec", transcript);
U.c.append_to_transcript(b"c", transcript);
// sample a random base for commiting to the inner product
let r = G::Scalar::challenge(b"r", transcript);
let gens_c = gens_c.scale(&r);
// a closure that executes a step of the recursive inner product argument
let prove_inner = |a_vec: &[G::Scalar],
b_vec: &[G::Scalar],
gens: &CommitGens<G>,
transcript: &mut Transcript|
-> Result<
(
CompressedCommitment<G::CompressedGroupElement>,
CompressedCommitment<G::CompressedGroupElement>,
Vec<G::Scalar>,
Vec<G::Scalar>,
CommitGens<G>,
),
NovaError,
> {
let n = a_vec.len();
let (gens_L, gens_R) = gens.split_at(n / 2);
let c_L = inner_product(&a_vec[0..n / 2], &b_vec[n / 2..n]);
let c_R = inner_product(&a_vec[n / 2..n], &b_vec[0..n / 2]);
let L = a_vec[0..n / 2]
.iter()
.chain(iter::once(&c_L))
.copied()
.collect::<Vec<G::Scalar>>()
.commit(&gens_R.combine(&gens_c))
.compress();
let R = a_vec[n / 2..n]
.iter()
.chain(iter::once(&c_R))
.copied()
.collect::<Vec<G::Scalar>>()
.commit(&gens_L.combine(&gens_c))
.compress();
L.append_to_transcript(b"L", transcript);
R.append_to_transcript(b"R", transcript);
let r = G::Scalar::challenge(b"challenge_r", transcript);
let r_inverse = r.invert().unwrap();
// fold the left half and the right half
let a_vec_folded = a_vec[0..n / 2]
.par_iter()
.zip(a_vec[n / 2..n].par_iter())
.map(|(a_L, a_R)| *a_L * r + r_inverse * *a_R)
.collect::<Vec<G::Scalar>>();
let b_vec_folded = b_vec[0..n / 2]
.par_iter()
.zip(b_vec[n / 2..n].par_iter())
.map(|(b_L, b_R)| *b_L * r_inverse + r * *b_R)
.collect::<Vec<G::Scalar>>();
let gens_folded = gens.fold(&r_inverse, &r);
Ok((L, R, a_vec_folded, b_vec_folded, gens_folded))
};
// two vectors to hold the logarithmic number of group elements
let mut L_vec: Vec<CompressedCommitment<G::CompressedGroupElement>> = Vec::new();
let mut R_vec: Vec<CompressedCommitment<G::CompressedGroupElement>> = Vec::new();
// we create mutable copies of vectors and generators
let mut a_vec = W.a_vec.to_vec();
let mut b_vec = U.b_vec.to_vec();
let mut gens = gens.clone();
for _i in 0..(U.b_vec.len() as f64).log2() as usize {
let (L, R, a_vec_folded, b_vec_folded, gens_folded) =
prove_inner(&a_vec, &b_vec, &gens, transcript)?;
L_vec.push(L);
R_vec.push(R);
a_vec = a_vec_folded;
b_vec = b_vec_folded;
gens = gens_folded;
}
Ok(InnerProductArgument {
L_vec,
R_vec,
a_hat: a_vec[0],
_p: Default::default(),
})
}
pub fn verify(
&self,
gens: &CommitGens<G>,
gens_c: &CommitGens<G>,
n: usize,
U: &InnerProductInstance<G>,
transcript: &mut Transcript,
) -> Result<(), NovaError> {
transcript.append_message(b"protocol-name", Self::protocol_name());
if U.b_vec.len() != n
|| n != (1 << self.L_vec.len())
|| self.L_vec.len() != self.R_vec.len()
|| self.L_vec.len() >= 32
{
return Err(NovaError::InvalidInputLength);
}
U.comm_a_vec.append_to_transcript(b"comm_a_vec", transcript);
U.b_vec.append_to_transcript(b"b_vec", transcript);
U.c.append_to_transcript(b"c", transcript);
// sample a random base for commiting to the inner product
let r = G::Scalar::challenge(b"r", transcript);
let gens_c = gens_c.scale(&r);
let P = U.comm_a_vec + [U.c].commit(&gens_c);
let batch_invert = |v: &[G::Scalar]| -> Result<Vec<G::Scalar>, NovaError> {
let mut products = vec![G::Scalar::zero(); v.len()];
let mut acc = G::Scalar::one();
for i in 0..v.len() {
products[i] = acc;
acc *= v[i];
}
// we can compute an inversion only if acc is non-zero
if acc == G::Scalar::zero() {
return Err(NovaError::InvalidInputLength);
}
// compute the inverse once for all entries
acc = acc.invert().unwrap();
let mut inv = vec![G::Scalar::zero(); v.len()];
for i in 0..v.len() {
let tmp = acc * v[v.len() - 1 - i];
inv[v.len() - 1 - i] = products[v.len() - 1 - i] * acc;
acc = tmp;
}
Ok(inv)
};
// compute a vector of public coins using self.L_vec and self.R_vec
let r = (0..self.L_vec.len())
.map(|i| {
self.L_vec[i].append_to_transcript(b"L", transcript);
self.R_vec[i].append_to_transcript(b"R", transcript);
G::Scalar::challenge(b"challenge_r", transcript)
})
.collect::<Vec<G::Scalar>>();
// precompute scalars necessary for verification
let r_square: Vec<G::Scalar> = (0..self.L_vec.len())
.into_par_iter()
.map(|i| r[i] * r[i])
.collect();
let r_inverse = batch_invert(&r)?;
let r_inverse_square: Vec<G::Scalar> = (0..self.L_vec.len())
.into_par_iter()
.map(|i| r_inverse[i] * r_inverse[i])
.collect();
// compute the vector with the tensor structure
let s = {
let mut s = vec![G::Scalar::zero(); n];
s[0] = {
let mut v = G::Scalar::one();
for r_inverse_i in &r_inverse {
v *= r_inverse_i;
}
v
};
for i in 1..n {
let pos_in_r = (31 - (i as u32).leading_zeros()) as usize;
s[i] = s[i - (1 << pos_in_r)] * r_square[(self.L_vec.len() - 1) - pos_in_r];
}
s
};
let gens_hat = {
let c = s.commit(gens).compress();
CommitGens::reinterpret_commitments_as_gens(&[c])?
};
let b_hat = inner_product(&U.b_vec, &s);
let P_hat = {
let gens_folded = {
let gens_L = CommitGens::reinterpret_commitments_as_gens(&self.L_vec)?;
let gens_R = CommitGens::reinterpret_commitments_as_gens(&self.R_vec)?;
let gens_P = CommitGens::reinterpret_commitments_as_gens(&[P.compress()])?;
gens_L.combine(&gens_R).combine(&gens_P)
};
r_square
.iter()
.chain(r_inverse_square.iter())
.chain(iter::once(&G::Scalar::one()))
.copied()
.collect::<Vec<G::Scalar>>()
.commit(&gens_folded)
};
if P_hat == [self.a_hat, self.a_hat * b_hat].commit(&gens_hat.combine(&gens_c)) {
Ok(())
} else {
Err(NovaError::InvalidIPA)
}
}
}