use bellperson::{
|
|
gadgets::{boolean::AllocatedBit, num::AllocatedNum},
|
|
ConstraintSystem, SynthesisError,
|
|
};
|
|
use ff::{PrimeField, PrimeFieldBits};
|
|
use nova_snark::{gadgets::ecc::AllocatedPoint, traits::circuit::StepCircuit};
|
|
use subtle::Choice;
|
|
|
|
// An affine point coordinate that is on the curve.
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct Coordinate<F>
|
|
where
|
|
F: PrimeField<Repr = [u8; 32]>,
|
|
{
|
|
pub x: F,
|
|
pub y: F,
|
|
pub is_infinity: bool,
|
|
}
|
|
|
|
impl<F> Coordinate<F>
|
|
where
|
|
F: PrimeField<Repr = [u8; 32]>,
|
|
{
|
|
// New affine point coordiante on the curve so is_infinity = false.
|
|
pub fn new(x: F, y: F) -> Self {
|
|
Self {
|
|
x,
|
|
y,
|
|
is_infinity: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
// An ECDSA signature
|
|
#[derive(Clone, Debug)]
|
|
pub struct EcdsaSignature<Fb, Fs>
|
|
where
|
|
Fb: PrimeField<Repr = [u8; 32]>,
|
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
|
{
|
|
pk: Coordinate<Fb>, // public key
|
|
r: Coordinate<Fb>, // (r, s) is the ECDSA signature
|
|
s: Fs,
|
|
c: Fs, // hash of the message
|
|
g: Coordinate<Fb>, // generator of the group; could be omitted if Nova's traits allow accessing the generator
|
|
}
|
|
|
|
impl<Fb, Fs> EcdsaSignature<Fb, Fs>
|
|
where
|
|
Fb: PrimeField<Repr = [u8; 32]>,
|
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
|
{
|
|
pub fn new(pk: Coordinate<Fb>, r: Coordinate<Fb>, s: Fs, c: Fs, g: Coordinate<Fb>) -> Self {
|
|
Self { pk, r, s, c, g }
|
|
}
|
|
}
|
|
|
|
// An ECDSA signature proof that we will use on the primary curve
|
|
#[derive(Clone, Debug)]
|
|
pub struct EcdsaCircuit<F>
|
|
where
|
|
F: PrimeField<Repr = [u8; 32]>,
|
|
{
|
|
pub r: Coordinate<F>,
|
|
pub g: Coordinate<F>,
|
|
pub pk: Coordinate<F>,
|
|
pub c: F,
|
|
pub s: F,
|
|
pub c_bits: Vec<Choice>,
|
|
pub s_bits: Vec<Choice>,
|
|
}
|
|
|
|
impl<F> EcdsaCircuit<F>
|
|
where
|
|
F: PrimeField<Repr = [u8; 32]>,
|
|
{
|
|
// Creates a new [`EcdsaCircuit<Fb, Fs>`]. The base and scalar field elements from the curve
|
|
// field used by the signature are converted to scalar field elements from the cyclic curve
|
|
// field used by the circuit.
|
|
pub fn new<Fb, Fs>(num_steps: usize, signatures: &[EcdsaSignature<Fb, Fs>]) -> (Vec<F>, Vec<Self>)
|
|
where
|
|
Fb: PrimeField<Repr = [u8; 32]>,
|
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
|
{
|
|
let mut z0 = Vec::new();
|
|
let mut circuits = Vec::new();
|
|
for (i, signature) in signatures.iter().enumerate().take(num_steps) {
|
|
let r = Coordinate::new(
|
|
F::from_repr(signature.r.x.to_repr()).unwrap(),
|
|
F::from_repr(signature.r.y.to_repr()).unwrap(),
|
|
);
|
|
|
|
let g = Coordinate::new(
|
|
F::from_repr(signature.g.x.to_repr()).unwrap(),
|
|
F::from_repr(signature.g.y.to_repr()).unwrap(),
|
|
);
|
|
|
|
let pk = Coordinate::new(
|
|
F::from_repr(signature.pk.x.to_repr()).unwrap(),
|
|
F::from_repr(signature.pk.y.to_repr()).unwrap(),
|
|
);
|
|
|
|
let c_bits = Self::to_le_bits(&signature.c);
|
|
let s_bits = Self::to_le_bits(&signature.s);
|
|
let c = F::from_repr(signature.c.to_repr()).unwrap();
|
|
let s = F::from_repr(signature.s.to_repr()).unwrap();
|
|
|
|
let circuit = EcdsaCircuit {
|
|
r,
|
|
g,
|
|
pk,
|
|
c,
|
|
s,
|
|
c_bits,
|
|
s_bits,
|
|
};
|
|
circuits.push(circuit);
|
|
|
|
if i == 0 {
|
|
z0 = vec![r.x, r.y, g.x, g.y, pk.x, pk.y, c, s];
|
|
}
|
|
}
|
|
|
|
(z0, circuits)
|
|
}
|
|
|
|
// Converts the scalar field element from the curve used by the signature to a bit represenation
|
|
// for later use in scalar multiplication using the cyclic curve used by the circuit.
|
|
fn to_le_bits<Fs>(fs: &Fs) -> Vec<Choice>
|
|
where
|
|
Fs: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
|
{
|
|
let bits = fs
|
|
.to_repr()
|
|
.iter()
|
|
.flat_map(|byte| (0..8).map(move |i| Choice::from((byte >> i) & 1u8)))
|
|
.collect::<Vec<Choice>>();
|
|
bits
|
|
}
|
|
|
|
// Synthesize a bit representation into circuit gadgets.
|
|
fn synthesize_bits<CS: ConstraintSystem<F>>(
|
|
cs: &mut CS,
|
|
bits: &[Choice],
|
|
) -> Result<Vec<AllocatedBit>, SynthesisError> {
|
|
let alloc_bits: Vec<AllocatedBit> = bits
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, bit)| {
|
|
AllocatedBit::alloc(
|
|
cs.namespace(|| format!("bit {}", i)),
|
|
Some(bit.unwrap_u8() == 1u8),
|
|
)
|
|
})
|
|
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
|
|
.unwrap();
|
|
Ok(alloc_bits)
|
|
}
|
|
}
|
|
|
|
impl<F> StepCircuit<F> for EcdsaCircuit<F>
|
|
where
|
|
F: PrimeField<Repr = [u8; 32]> + PrimeFieldBits,
|
|
{
|
|
fn arity(&self) -> usize {
|
|
8
|
|
}
|
|
|
|
// Prove knowledge of the sk used to generate the Ecdsa signature (R,s)
|
|
// with public key PK and message commitment c.
|
|
// [s]G == R + [c]PK
|
|
fn synthesize<CS: ConstraintSystem<F>>(
|
|
&self,
|
|
cs: &mut CS,
|
|
_z: &[AllocatedNum<F>],
|
|
) -> Result<Vec<AllocatedNum<F>>, SynthesisError> {
|
|
let g = AllocatedPoint::alloc(
|
|
cs.namespace(|| "G"),
|
|
Some((self.g.x, self.g.y, self.g.is_infinity)),
|
|
)?;
|
|
let s_bits = Self::synthesize_bits(&mut cs.namespace(|| "s_bits"), &self.s_bits)?;
|
|
let sg = g.scalar_mul(cs.namespace(|| "[s]G"), s_bits)?;
|
|
let r = AllocatedPoint::alloc(
|
|
cs.namespace(|| "R"),
|
|
Some((self.r.x, self.r.y, self.r.is_infinity)),
|
|
)?;
|
|
let c_bits = Self::synthesize_bits(&mut cs.namespace(|| "c_bits"), &self.c_bits)?;
|
|
let pk = AllocatedPoint::alloc(
|
|
cs.namespace(|| "PK"),
|
|
Some((self.pk.x, self.pk.y, self.pk.is_infinity)),
|
|
)?;
|
|
let cpk = pk.scalar_mul(&mut cs.namespace(|| "[c]PK"), c_bits)?;
|
|
let rcpk = cpk.add(&mut cs.namespace(|| "R + [c]PK"), &r)?;
|
|
|
|
let (rcpk_x, rcpk_y, _) = rcpk.get_coordinates();
|
|
let (sg_x, sg_y, _) = sg.get_coordinates();
|
|
|
|
cs.enforce(
|
|
|| "sg_x == rcpk_x",
|
|
|lc| lc + sg_x.get_variable(),
|
|
|lc| lc + CS::one(),
|
|
|lc| lc + rcpk_x.get_variable(),
|
|
);
|
|
|
|
cs.enforce(
|
|
|| "sg_y == rcpk_y",
|
|
|lc| lc + sg_y.get_variable(),
|
|
|lc| lc + CS::one(),
|
|
|lc| lc + rcpk_y.get_variable(),
|
|
);
|
|
|
|
let rx = AllocatedNum::alloc(cs.namespace(|| "rx"), || Ok(self.r.x))?;
|
|
let ry = AllocatedNum::alloc(cs.namespace(|| "ry"), || Ok(self.r.y))?;
|
|
let gx = AllocatedNum::alloc(cs.namespace(|| "gx"), || Ok(self.g.x))?;
|
|
let gy = AllocatedNum::alloc(cs.namespace(|| "gy"), || Ok(self.g.y))?;
|
|
let pkx = AllocatedNum::alloc(cs.namespace(|| "pkx"), || Ok(self.pk.x))?;
|
|
let pky = AllocatedNum::alloc(cs.namespace(|| "pky"), || Ok(self.pk.y))?;
|
|
let c = AllocatedNum::alloc(cs.namespace(|| "c"), || Ok(self.c))?;
|
|
let s = AllocatedNum::alloc(cs.namespace(|| "s"), || Ok(self.s))?;
|
|
|
|
Ok(vec![rx, ry, gx, gy, pkx, pky, c, s])
|
|
}
|
|
|
|
fn output(&self, _z: &[F]) -> Vec<F> {
|
|
vec![
|
|
self.r.x, self.r.y, self.g.x, self.g.y, self.pk.x, self.pk.y, self.c, self.s,
|
|
]
|
|
}
|
|
}
|