You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

821 lines
25 KiB

use super::{
util::{
Bitvector, Num, {f_to_nat, nat_to_f},
},
OptionExt,
};
use bellperson::{ConstraintSystem, LinearCombination, SynthesisError};
use ff::PrimeField;
use num_bigint::BigInt;
use num_traits::cast::ToPrimitive;
use std::borrow::Borrow;
use std::cmp::{max, min};
use std::convert::From;
/// Compute the natural number represented by an array of limbs.
/// The limbs are assumed to be based the `limb_width` power of 2.
pub fn limbs_to_nat<Scalar: PrimeField, B: Borrow<Scalar>, I: DoubleEndedIterator<Item = B>>(
limbs: I,
limb_width: usize,
) -> BigInt {
limbs.rev().fold(BigInt::from(0), |mut acc, limb| {
acc <<= limb_width as u32;
acc += f_to_nat(limb.borrow());
acc
})
}
fn int_with_n_ones(n: usize) -> BigInt {
let mut m = BigInt::from(1);
m <<= n as u32;
m -= 1;
m
}
/// Compute the limbs encoding a natural number.
/// The limbs are assumed to be based the `limb_width` power of 2.
pub fn nat_to_limbs<Scalar: PrimeField>(
nat: &BigInt,
limb_width: usize,
n_limbs: usize,
) -> Result<Vec<Scalar>, SynthesisError> {
let mask = int_with_n_ones(limb_width);
let mut nat = nat.clone();
if nat.bits() as usize <= n_limbs * limb_width {
Ok(
(0..n_limbs)
.map(|_| {
let r = &nat & &mask;
nat >>= limb_width as u32;
nat_to_f(&r).unwrap()
})
.collect(),
)
} else {
eprintln!("nat {nat} does not fit in {n_limbs} limbs of width {limb_width}");
Err(SynthesisError::Unsatisfiable)
}
}
#[derive(Clone, PartialEq, Eq)]
pub struct BigNatParams {
pub min_bits: usize,
pub max_word: BigInt,
pub limb_width: usize,
pub n_limbs: usize,
}
impl BigNatParams {
pub fn new(limb_width: usize, n_limbs: usize) -> Self {
let mut max_word = BigInt::from(1) << limb_width as u32;
max_word -= 1;
BigNatParams {
max_word,
n_limbs,
limb_width,
min_bits: 0,
}
}
}
/// A representation of a large natural number (a member of {0, 1, 2, ... })
#[derive(Clone)]
pub struct BigNat<Scalar: PrimeField> {
/// The linear combinations which constrain the value of each limb of the number
pub limbs: Vec<LinearCombination<Scalar>>,
/// The witness values for each limb (filled at witness-time)
pub limb_values: Option<Vec<Scalar>>,
/// The value of the whole number (filled at witness-time)
pub value: Option<BigInt>,
/// Parameters
pub params: BigNatParams,
}
impl<Scalar: PrimeField> std::cmp::PartialEq for BigNat<Scalar> {
fn eq(&self, other: &Self) -> bool {
self.value == other.value && self.params == other.params
}
}
impl<Scalar: PrimeField> std::cmp::Eq for BigNat<Scalar> {}
impl<Scalar: PrimeField> From<BigNat<Scalar>> for Polynomial<Scalar> {
fn from(other: BigNat<Scalar>) -> Polynomial<Scalar> {
Polynomial {
coefficients: other.limbs,
values: other.limb_values,
}
}
}
impl<Scalar: PrimeField> BigNat<Scalar> {
/// Allocates a `BigNat` in the circuit with `n_limbs` limbs of width `limb_width` each.
/// If `max_word` is missing, then it is assumed to be `(2 << limb_width) - 1`.
/// The value is provided by a closure returning limb values.
pub fn alloc_from_limbs<CS, F>(
mut cs: CS,
f: F,
max_word: Option<BigInt>,
limb_width: usize,
n_limbs: usize,
) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<Scalar>,
F: FnOnce() -> Result<Vec<Scalar>, SynthesisError>,
{
let values_cell = f();
let mut value = None;
let mut limb_values = None;
let limbs = (0..n_limbs)
.map(|limb_i| {
cs.alloc(
|| format!("limb {limb_i}"),
|| match values_cell {
Ok(ref vs) => {
if vs.len() != n_limbs {
eprintln!("Values do not match stated limb count");
return Err(SynthesisError::Unsatisfiable);
}
if value.is_none() {
value = Some(limbs_to_nat::<Scalar, _, _>(vs.iter(), limb_width));
}
if limb_values.is_none() {
limb_values = Some(vs.clone());
}
Ok(vs[limb_i])
}
// Hack b/c SynthesisError and io::Error don't implement Clone
Err(ref e) => Err(SynthesisError::from(std::io::Error::new(
std::io::ErrorKind::Other,
format!("{e}"),
))),
},
)
.map(|v| LinearCombination::zero() + v)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(Self {
value,
limb_values,
limbs,
params: BigNatParams {
min_bits: 0,
n_limbs,
max_word: max_word.unwrap_or_else(|| int_with_n_ones(limb_width)),
limb_width,
},
})
}
/// Allocates a `BigNat` in the circuit with `n_limbs` limbs of width `limb_width` each.
/// The `max_word` is gauranteed to be `(2 << limb_width) - 1`.
/// The value is provided by a closure returning a natural number.
pub fn alloc_from_nat<CS, F>(
mut cs: CS,
f: F,
limb_width: usize,
n_limbs: usize,
) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<Scalar>,
F: FnOnce() -> Result<BigInt, SynthesisError>,
{
let all_values_cell =
f().and_then(|v| Ok((nat_to_limbs::<Scalar>(&v, limb_width, n_limbs)?, v)));
let mut value = None;
let mut limb_values = Vec::new();
let limbs = (0..n_limbs)
.map(|limb_i| {
cs.alloc(
|| format!("limb {limb_i}"),
|| match all_values_cell {
Ok((ref vs, ref v)) => {
if value.is_none() {
value = Some(v.clone());
}
limb_values.push(vs[limb_i]);
Ok(vs[limb_i])
}
// Hack b/c SynthesisError and io::Error don't implement Clone
Err(ref e) => Err(SynthesisError::from(std::io::Error::new(
std::io::ErrorKind::Other,
format!("{e}"),
))),
},
)
.map(|v| LinearCombination::zero() + v)
})
.collect::<Result<Vec<_>, _>>()?;
Ok(Self {
value,
limb_values: if !limb_values.is_empty() {
Some(limb_values)
} else {
None
},
limbs,
params: BigNatParams::new(limb_width, n_limbs),
})
}
/// Allocates a `BigNat` in the circuit with `n_limbs` limbs of width `limb_width` each.
/// The `max_word` is gauranteed to be `(2 << limb_width) - 1`.
/// The value is provided by an allocated number
pub fn from_num<CS: ConstraintSystem<Scalar>>(
mut cs: CS,
n: Num<Scalar>,
limb_width: usize,
n_limbs: usize,
) -> Result<Self, SynthesisError> {
let bignat = Self::alloc_from_nat(
cs.namespace(|| "bignat"),
|| {
Ok({
n.value
.as_ref()
.map(|n| f_to_nat(n))
.ok_or(SynthesisError::AssignmentMissing)?
})
},
limb_width,
n_limbs,
)?;
// check if bignat equals n
// (1) decompose `bignat` into a bitvector `bv`
let bv = bignat.decompose(cs.namespace(|| "bv"))?;
// (2) recompose bits and check if it equals n
n.is_equal(cs.namespace(|| "n"), &bv)?;
Ok(bignat)
}
pub fn as_limbs(&self) -> Vec<Num<Scalar>> {
let mut limbs = Vec::new();
for (i, lc) in self.limbs.iter().enumerate() {
limbs.push(Num::new(
self.limb_values.as_ref().map(|vs| vs[i]),
lc.clone(),
));
}
limbs
}
pub fn assert_well_formed<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
) -> Result<(), SynthesisError> {
// swap the option and iterator
let limb_values_split =
(0..self.limbs.len()).map(|i| self.limb_values.as_ref().map(|vs| vs[i]));
for (i, (limb, limb_value)) in self.limbs.iter().zip(limb_values_split).enumerate() {
Num::new(limb_value, limb.clone())
.fits_in_bits(cs.namespace(|| format!("{i}")), self.params.limb_width)?;
}
Ok(())
}
/// Break `self` up into a bit-vector.
pub fn decompose<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
) -> Result<Bitvector<Scalar>, SynthesisError> {
let limb_values_split =
(0..self.limbs.len()).map(|i| self.limb_values.as_ref().map(|vs| vs[i]));
let bitvectors: Vec<Bitvector<Scalar>> = self
.limbs
.iter()
.zip(limb_values_split)
.enumerate()
.map(|(i, (limb, limb_value))| {
Num::new(limb_value, limb.clone()).decompose(
cs.namespace(|| format!("subdecmop {i}")),
self.params.limb_width,
)
})
.collect::<Result<Vec<_>, _>>()?;
let mut bits = Vec::new();
let mut values = Vec::new();
let mut allocations = Vec::new();
for bv in bitvectors {
bits.extend(bv.bits);
if let Some(vs) = bv.values {
values.extend(vs)
};
allocations.extend(bv.allocations);
}
let values = if !values.is_empty() {
Some(values)
} else {
None
};
Ok(Bitvector {
bits,
values,
allocations,
})
}
pub fn enforce_limb_width_agreement(
&self,
other: &Self,
location: &str,
) -> Result<usize, SynthesisError> {
if self.params.limb_width == other.params.limb_width {
Ok(self.params.limb_width)
} else {
eprintln!(
"Limb widths {}, {}, do not agree at {}",
self.params.limb_width, other.params.limb_width, location
);
Err(SynthesisError::Unsatisfiable)
}
}
pub fn from_poly(poly: Polynomial<Scalar>, limb_width: usize, max_word: BigInt) -> Self {
Self {
params: BigNatParams {
min_bits: 0,
max_word,
n_limbs: poly.coefficients.len(),
limb_width,
},
limbs: poly.coefficients,
value: poly
.values
.as_ref()
.map(|limb_values| limbs_to_nat::<Scalar, _, _>(limb_values.iter(), limb_width)),
limb_values: poly.values,
}
}
/// Constrain `self` to be equal to `other`, after carrying both.
pub fn equal_when_carried<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.enforce_limb_width_agreement(other, "equal_when_carried")?;
// We'll propegate carries over the first `n` limbs.
let n = min(self.limbs.len(), other.limbs.len());
let target_base = BigInt::from(1u8) << self.params.limb_width as u32;
let mut accumulated_extra = BigInt::from(0usize);
let max_word = std::cmp::max(&self.params.max_word, &other.params.max_word);
let carry_bits = (((max_word.to_f64().unwrap() * 2.0).log2() - self.params.limb_width as f64)
.ceil()
+ 0.1) as usize;
let mut carry_in = Num::new(Some(Scalar::ZERO), LinearCombination::zero());
for i in 0..n {
let carry = Num::alloc(cs.namespace(|| format!("carry value {i}")), || {
Ok(
nat_to_f(
&((f_to_nat(&self.limb_values.grab()?[i])
+ f_to_nat(&carry_in.value.unwrap())
+ max_word
- f_to_nat(&other.limb_values.grab()?[i]))
/ &target_base),
)
.unwrap(),
)
})?;
accumulated_extra += max_word;
cs.enforce(
|| format!("carry {i}"),
|lc| lc,
|lc| lc,
|lc| {
lc + &carry_in.num + &self.limbs[i] - &other.limbs[i]
+ (nat_to_f(max_word).unwrap(), CS::one())
- (nat_to_f(&target_base).unwrap(), &carry.num)
- (
nat_to_f(&(&accumulated_extra % &target_base)).unwrap(),
CS::one(),
)
},
);
accumulated_extra /= &target_base;
if i < n - 1 {
carry.fits_in_bits(cs.namespace(|| format!("carry {i} decomp")), carry_bits)?;
} else {
cs.enforce(
|| format!("carry {i} is out"),
|lc| lc,
|lc| lc,
|lc| lc + &carry.num - (nat_to_f(&accumulated_extra).unwrap(), CS::one()),
);
}
carry_in = carry;
}
for (i, zero_limb) in self.limbs.iter().enumerate().skip(n) {
cs.enforce(
|| format!("zero self {i}"),
|lc| lc,
|lc| lc,
|lc| lc + zero_limb,
);
}
for (i, zero_limb) in other.limbs.iter().enumerate().skip(n) {
cs.enforce(
|| format!("zero other {i}"),
|lc| lc,
|lc| lc,
|lc| lc + zero_limb,
);
}
Ok(())
}
/// Constrain `self` to be equal to `other`, after carrying both.
/// Uses regrouping internally to take full advantage of the field size and reduce the amount
/// of carrying.
pub fn equal_when_carried_regroup<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<(), SynthesisError> {
self.enforce_limb_width_agreement(other, "equal_when_carried_regroup")?;
let max_word = std::cmp::max(&self.params.max_word, &other.params.max_word);
let carry_bits = (((max_word.to_f64().unwrap() * 2.0).log2() - self.params.limb_width as f64)
.ceil()
+ 0.1) as usize;
let limbs_per_group = (Scalar::CAPACITY as usize - carry_bits) / self.params.limb_width;
let self_grouped = self.group_limbs(limbs_per_group);
let other_grouped = other.group_limbs(limbs_per_group);
self_grouped.equal_when_carried(cs.namespace(|| "grouped"), &other_grouped)
}
pub fn add(&self, other: &Self) -> Result<BigNat<Scalar>, SynthesisError> {
self.enforce_limb_width_agreement(other, "add")?;
let n_limbs = max(self.params.n_limbs, other.params.n_limbs);
let max_word = &self.params.max_word + &other.params.max_word;
let limbs: Vec<LinearCombination<Scalar>> = (0..n_limbs)
.map(|i| match (self.limbs.get(i), other.limbs.get(i)) {
(Some(a), Some(b)) => a.clone() + b,
(Some(a), None) => a.clone(),
(None, Some(b)) => b.clone(),
(None, None) => unreachable!(),
})
.collect();
let limb_values: Option<Vec<Scalar>> = self.limb_values.as_ref().and_then(|x| {
other.limb_values.as_ref().map(|y| {
(0..n_limbs)
.map(|i| match (x.get(i), y.get(i)) {
(Some(a), Some(b)) => {
let mut t = *a;
t.add_assign(b);
t
}
(Some(a), None) => *a,
(None, Some(a)) => *a,
(None, None) => unreachable!(),
})
.collect()
})
});
let value = self
.value
.as_ref()
.and_then(|x| other.value.as_ref().map(|y| x + y));
Ok(Self {
limb_values,
value,
limbs,
params: BigNatParams {
min_bits: max(self.params.min_bits, other.params.min_bits),
n_limbs,
max_word,
limb_width: self.params.limb_width,
},
})
}
/// Compute a `BigNat` contrained to be equal to `self * other % modulus`.
pub fn mult_mod<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
modulus: &Self,
) -> Result<(BigNat<Scalar>, BigNat<Scalar>), SynthesisError> {
self.enforce_limb_width_agreement(other, "mult_mod")?;
let limb_width = self.params.limb_width;
let quotient_bits = (self.n_bits() + other.n_bits()).saturating_sub(modulus.params.min_bits);
let quotient_limbs = quotient_bits.saturating_sub(1) / limb_width + 1;
let quotient = BigNat::alloc_from_nat(
cs.namespace(|| "quotient"),
|| {
Ok({
let mut x = self.value.grab()?.clone();
x *= other.value.grab()?;
x /= modulus.value.grab()?;
x
})
},
self.params.limb_width,
quotient_limbs,
)?;
quotient.assert_well_formed(cs.namespace(|| "quotient rangecheck"))?;
let remainder = BigNat::alloc_from_nat(
cs.namespace(|| "remainder"),
|| {
Ok({
let mut x = self.value.grab()?.clone();
x *= other.value.grab()?;
x %= modulus.value.grab()?;
x
})
},
self.params.limb_width,
modulus.limbs.len(),
)?;
remainder.assert_well_formed(cs.namespace(|| "remainder rangecheck"))?;
let a_poly = Polynomial::from(self.clone());
let b_poly = Polynomial::from(other.clone());
let mod_poly = Polynomial::from(modulus.clone());
let q_poly = Polynomial::from(quotient.clone());
let r_poly = Polynomial::from(remainder.clone());
// a * b
let left = a_poly.alloc_product(cs.namespace(|| "left"), &b_poly)?;
let right_product = q_poly.alloc_product(cs.namespace(|| "right_product"), &mod_poly)?;
// q * m + r
let right = right_product.sum(&r_poly);
let left_max_word = {
let mut x = BigInt::from(min(self.limbs.len(), other.limbs.len()));
x *= &self.params.max_word;
x *= &other.params.max_word;
x
};
let right_max_word = {
let mut x = BigInt::from(std::cmp::min(quotient.limbs.len(), modulus.limbs.len()));
x *= &quotient.params.max_word;
x *= &modulus.params.max_word;
x += &remainder.params.max_word;
x
};
let left_int = BigNat::from_poly(left, limb_width, left_max_word);
let right_int = BigNat::from_poly(right, limb_width, right_max_word);
left_int.equal_when_carried_regroup(cs.namespace(|| "carry"), &right_int)?;
Ok((quotient, remainder))
}
/// Compute a `BigNat` contrained to be equal to `self * other % modulus`.
pub fn red_mod<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
modulus: &Self,
) -> Result<BigNat<Scalar>, SynthesisError> {
self.enforce_limb_width_agreement(modulus, "red_mod")?;
let limb_width = self.params.limb_width;
let quotient_bits = self.n_bits().saturating_sub(modulus.params.min_bits);
let quotient_limbs = quotient_bits.saturating_sub(1) / limb_width + 1;
let quotient = BigNat::alloc_from_nat(
cs.namespace(|| "quotient"),
|| Ok(self.value.grab()? / modulus.value.grab()?),
self.params.limb_width,
quotient_limbs,
)?;
quotient.assert_well_formed(cs.namespace(|| "quotient rangecheck"))?;
let remainder = BigNat::alloc_from_nat(
cs.namespace(|| "remainder"),
|| Ok(self.value.grab()? % modulus.value.grab()?),
self.params.limb_width,
modulus.limbs.len(),
)?;
remainder.assert_well_formed(cs.namespace(|| "remainder rangecheck"))?;
let mod_poly = Polynomial::from(modulus.clone());
let q_poly = Polynomial::from(quotient.clone());
let r_poly = Polynomial::from(remainder.clone());
// q * m + r
let right_product = q_poly.alloc_product(cs.namespace(|| "right_product"), &mod_poly)?;
let right = right_product.sum(&r_poly);
let right_max_word = {
let mut x = BigInt::from(std::cmp::min(quotient.limbs.len(), modulus.limbs.len()));
x *= &quotient.params.max_word;
x *= &modulus.params.max_word;
x += &remainder.params.max_word;
x
};
let right_int = BigNat::from_poly(right, limb_width, right_max_word);
self.equal_when_carried_regroup(cs.namespace(|| "carry"), &right_int)?;
Ok(remainder)
}
/// Combines limbs into groups.
pub fn group_limbs(&self, limbs_per_group: usize) -> BigNat<Scalar> {
let n_groups = (self.limbs.len() - 1) / limbs_per_group + 1;
let limb_values = self.limb_values.as_ref().map(|vs| {
let mut values: Vec<Scalar> = vec![Scalar::ZERO; n_groups];
let mut shift = Scalar::ONE;
let limb_block = (0..self.params.limb_width).fold(Scalar::ONE, |mut l, _| {
l = l.double();
l
});
for (i, v) in vs.iter().enumerate() {
if i % limbs_per_group == 0 {
shift = Scalar::ONE;
}
let mut a = shift;
a *= v;
values[i / limbs_per_group].add_assign(&a);
shift.mul_assign(&limb_block);
}
values
});
let limbs = {
let mut limbs: Vec<LinearCombination<Scalar>> = vec![LinearCombination::zero(); n_groups];
let mut shift = Scalar::ONE;
let limb_block = (0..self.params.limb_width).fold(Scalar::ONE, |mut l, _| {
l = l.double();
l
});
for (i, limb) in self.limbs.iter().enumerate() {
if i % limbs_per_group == 0 {
shift = Scalar::ONE;
}
limbs[i / limbs_per_group] =
std::mem::replace(&mut limbs[i / limbs_per_group], LinearCombination::zero())
+ (shift, limb);
shift.mul_assign(&limb_block);
}
limbs
};
let max_word = (0..limbs_per_group).fold(BigInt::from(0u8), |mut acc, i| {
acc.set_bit((i * self.params.limb_width) as u64, true);
acc
}) * &self.params.max_word;
BigNat {
params: BigNatParams {
min_bits: self.params.min_bits,
limb_width: self.params.limb_width * limbs_per_group,
n_limbs: limbs.len(),
max_word,
},
limbs,
limb_values,
value: self.value.clone(),
}
}
pub fn n_bits(&self) -> usize {
assert!(self.params.n_limbs > 0);
self.params.limb_width * (self.params.n_limbs - 1) + self.params.max_word.bits() as usize
}
}
pub struct Polynomial<Scalar: PrimeField> {
pub coefficients: Vec<LinearCombination<Scalar>>,
pub values: Option<Vec<Scalar>>,
}
impl<Scalar: PrimeField> Polynomial<Scalar> {
pub fn alloc_product<CS: ConstraintSystem<Scalar>>(
&self,
mut cs: CS,
other: &Self,
) -> Result<Polynomial<Scalar>, SynthesisError> {
let n_product_coeffs = self.coefficients.len() + other.coefficients.len() - 1;
let values = self.values.as_ref().and_then(|self_vs| {
other.values.as_ref().map(|other_vs| {
let mut values: Vec<Scalar> = std::iter::repeat_with(|| Scalar::ZERO)
.take(n_product_coeffs)
.collect();
for (self_i, self_v) in self_vs.iter().enumerate() {
for (other_i, other_v) in other_vs.iter().enumerate() {
let mut v = *self_v;
v.mul_assign(other_v);
values[self_i + other_i].add_assign(&v);
}
}
values
})
});
let coefficients = (0..n_product_coeffs)
.map(|i| {
Ok(LinearCombination::zero() + cs.alloc(|| format!("prod {i}"), || Ok(values.grab()?[i]))?)
})
.collect::<Result<Vec<LinearCombination<Scalar>>, SynthesisError>>()?;
let product = Polynomial {
coefficients,
values,
};
let one = Scalar::ONE;
let mut x = Scalar::ZERO;
for _ in 1..(n_product_coeffs + 1) {
x.add_assign(&one);
cs.enforce(
|| format!("pointwise product @ {x:?}"),
|lc| {
let mut i = Scalar::ONE;
self.coefficients.iter().fold(lc, |lc, c| {
let r = lc + (i, c);
i.mul_assign(&x);
r
})
},
|lc| {
let mut i = Scalar::ONE;
other.coefficients.iter().fold(lc, |lc, c| {
let r = lc + (i, c);
i.mul_assign(&x);
r
})
},
|lc| {
let mut i = Scalar::ONE;
product.coefficients.iter().fold(lc, |lc, c| {
let r = lc + (i, c);
i.mul_assign(&x);
r
})
},
)
}
Ok(product)
}
pub fn sum(&self, other: &Self) -> Self {
let n_coeffs = max(self.coefficients.len(), other.coefficients.len());
let values = self.values.as_ref().and_then(|self_vs| {
other.values.as_ref().map(|other_vs| {
(0..n_coeffs)
.map(|i| {
let mut s = Scalar::ZERO;
if i < self_vs.len() {
s.add_assign(&self_vs[i]);
}
if i < other_vs.len() {
s.add_assign(&other_vs[i]);
}
s
})
.collect()
})
});
let coefficients = (0..n_coeffs)
.map(|i| {
let mut lc = LinearCombination::zero();
if i < self.coefficients.len() {
lc = lc + &self.coefficients[i];
}
if i < other.coefficients.len() {
lc = lc + &other.coefficients[i];
}
lc
})
.collect();
Polynomial {
coefficients,
values,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use bellperson::Circuit;
pub struct PolynomialMultiplier<Scalar: PrimeField> {
pub a: Vec<Scalar>,
pub b: Vec<Scalar>,
}
impl<Scalar: PrimeField> Circuit<Scalar> for PolynomialMultiplier<Scalar> {
fn synthesize<CS: ConstraintSystem<Scalar>>(self, cs: &mut CS) -> Result<(), SynthesisError> {
let a = Polynomial {
coefficients: self
.a
.iter()
.enumerate()
.map(|(i, x)| {
Ok(LinearCombination::zero() + cs.alloc(|| format!("coeff_a {i}"), || Ok(*x))?)
})
.collect::<Result<Vec<LinearCombination<Scalar>>, SynthesisError>>()?,
values: Some(self.a),
};
let b = Polynomial {
coefficients: self
.b
.iter()
.enumerate()
.map(|(i, x)| {
Ok(LinearCombination::zero() + cs.alloc(|| format!("coeff_b {i}"), || Ok(*x))?)
})
.collect::<Result<Vec<LinearCombination<Scalar>>, SynthesisError>>()?,
values: Some(self.b),
};
let _prod = a.alloc_product(cs.namespace(|| "product"), &b)?;
Ok(())
}
}
}