You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1117 lines
35 KiB

//! This module implements various elliptic curve gadgets
#![allow(non_snake_case)]
use crate::{
gadgets::utils::{
alloc_num_equals, alloc_one, alloc_zero, conditionally_select, conditionally_select2,
select_num_or_one, select_num_or_zero, select_num_or_zero2, select_one_or_diff2,
select_one_or_num2, select_zero_or_num2,
},
traits::Group,
};
use bellperson::{
gadgets::{
boolean::{AllocatedBit, Boolean},
num::AllocatedNum,
Assignment,
},
ConstraintSystem, SynthesisError,
};
use ff::{Field, PrimeField};
/// AllocatedPoint provides an elliptic curve abstraction inside a circuit.
#[derive(Clone)]
pub struct AllocatedPoint<G>
where
G: Group,
{
pub(crate) x: AllocatedNum<G::Base>,
pub(crate) y: AllocatedNum<G::Base>,
pub(crate) is_infinity: AllocatedNum<G::Base>,
}
impl<G> AllocatedPoint<G>
where
G: Group,
{
/// Allocates a new point on the curve using coordinates provided by `coords`.
/// If coords = None, it allocates the default infinity point
pub fn alloc<CS>(
mut cs: CS,
coords: Option<(G::Base, G::Base, bool)>,
) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<G::Base>,
{
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(coords.map_or(G::Base::ZERO, |c| c.0))
})?;
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(coords.map_or(G::Base::ZERO, |c| c.1))
})?;
let is_infinity = AllocatedNum::alloc(cs.namespace(|| "is_infinity"), || {
Ok(if coords.map_or(true, |c| c.2) {
G::Base::ONE
} else {
G::Base::ZERO
})
})?;
cs.enforce(
|| "is_infinity is bit",
|lc| lc + is_infinity.get_variable(),
|lc| lc + CS::one() - is_infinity.get_variable(),
|lc| lc,
);
Ok(AllocatedPoint { x, y, is_infinity })
}
/// Allocates a default point on the curve.
pub fn default<CS>(mut cs: CS) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<G::Base>,
{
let zero = alloc_zero(cs.namespace(|| "zero"))?;
let one = alloc_one(cs.namespace(|| "one"))?;
Ok(AllocatedPoint {
x: zero.clone(),
y: zero,
is_infinity: one,
})
}
/// Returns coordinates associated with the point.
pub fn get_coordinates(
&self,
) -> (
&AllocatedNum<G::Base>,
&AllocatedNum<G::Base>,
&AllocatedNum<G::Base>,
) {
(&self.x, &self.y, &self.is_infinity)
}
/// Negates the provided point
pub fn negate<CS: ConstraintSystem<G::Base>>(&self, mut cs: CS) -> Result<Self, SynthesisError> {
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || Ok(-*self.y.get_value().get()?))?;
cs.enforce(
|| "check y = - self.y",
|lc| lc + self.y.get_variable(),
|lc| lc + CS::one(),
|lc| lc - y.get_variable(),
);
Ok(Self {
x: self.x.clone(),
y,
is_infinity: self.is_infinity.clone(),
})
}
/// Add two points (may be equal)
pub fn add<CS: ConstraintSystem<G::Base>>(
&self,
mut cs: CS,
other: &AllocatedPoint<G>,
) -> Result<Self, SynthesisError> {
// Compute boolean equal indicating if self = other
let equal_x = alloc_num_equals(
cs.namespace(|| "check self.x == other.x"),
&self.x,
&other.x,
)?;
let equal_y = alloc_num_equals(
cs.namespace(|| "check self.y == other.y"),
&self.y,
&other.y,
)?;
// Compute the result of the addition and the result of double self
let result_from_add = self.add_internal(cs.namespace(|| "add internal"), other, &equal_x)?;
let result_from_double = self.double(cs.namespace(|| "double"))?;
// Output:
// If (self == other) {
// return double(self)
// }else {
// if (self.x == other.x){
// return infinity [negation]
// } else {
// return add(self, other)
// }
// }
let result_for_equal_x = AllocatedPoint::select_point_or_infinity(
cs.namespace(|| "equal_y ? result_from_double : infinity"),
&result_from_double,
&Boolean::from(equal_y),
)?;
AllocatedPoint::conditionally_select(
cs.namespace(|| "equal ? result_from_double : result_from_add"),
&result_for_equal_x,
&result_from_add,
&Boolean::from(equal_x),
)
}
/// Adds other point to this point and returns the result. Assumes that the two points are
/// different and that both other.is_infinity and this.is_infinty are bits
pub fn add_internal<CS: ConstraintSystem<G::Base>>(
&self,
mut cs: CS,
other: &AllocatedPoint<G>,
equal_x: &AllocatedBit,
) -> Result<Self, SynthesisError> {
//************************************************************************/
// lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
//************************************************************************/
// First compute (other.x - self.x).inverse()
// If either self or other are the infinity point or self.x = other.x then compute bogus values
// Specifically,
// x_diff = self != inf && other != inf && self.x == other.x ? (other.x - self.x) : 1
// Compute self.is_infinity OR other.is_infinity =
// NOT(NOT(self.is_ifninity) AND NOT(other.is_infinity))
let at_least_one_inf = AllocatedNum::alloc(cs.namespace(|| "at least one inf"), || {
Ok(
G::Base::ONE
- (G::Base::ONE - *self.is_infinity.get_value().get()?)
* (G::Base::ONE - *other.is_infinity.get_value().get()?),
)
})?;
cs.enforce(
|| "1 - at least one inf = (1-self.is_infinity) * (1-other.is_infinity)",
|lc| lc + CS::one() - self.is_infinity.get_variable(),
|lc| lc + CS::one() - other.is_infinity.get_variable(),
|lc| lc + CS::one() - at_least_one_inf.get_variable(),
);
// Now compute x_diff_is_actual = at_least_one_inf OR equal_x
let x_diff_is_actual =
AllocatedNum::alloc(cs.namespace(|| "allocate x_diff_is_actual"), || {
Ok(if *equal_x.get_value().get()? {
G::Base::ONE
} else {
*at_least_one_inf.get_value().get()?
})
})?;
cs.enforce(
|| "1 - x_diff_is_actual = (1-equal_x) * (1-at_least_one_inf)",
|lc| lc + CS::one() - at_least_one_inf.get_variable(),
|lc| lc + CS::one() - equal_x.get_variable(),
|lc| lc + CS::one() - x_diff_is_actual.get_variable(),
);
// x_diff = 1 if either self.is_infinity or other.is_infinity or self.x = other.x else self.x -
// other.x
let x_diff = select_one_or_diff2(
cs.namespace(|| "Compute x_diff"),
&other.x,
&self.x,
&x_diff_is_actual,
)?;
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
let x_diff_inv = if *x_diff_is_actual.get_value().get()? == G::Base::ONE {
// Set to default
G::Base::ONE
} else {
// Set to the actual inverse
(*other.x.get_value().get()? - *self.x.get_value().get()?)
.invert()
.unwrap()
};
Ok((*other.y.get_value().get()? - *self.y.get_value().get()?) * x_diff_inv)
})?;
cs.enforce(
|| "Check that lambda is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + x_diff.get_variable(),
|lc| lc + other.y.get_variable() - self.y.get_variable(),
);
//************************************************************************/
// x = lambda * lambda - self.x - other.x;
//************************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
*lambda.get_value().get()? * lambda.get_value().get()?
- *self.x.get_value().get()?
- *other.x.get_value().get()?,
)
})?;
cs.enforce(
|| "check that x is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + other.x.get_variable(),
);
//************************************************************************/
// y = lambda * (self.x - x) - self.y;
//************************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
*lambda.get_value().get()? * (*self.x.get_value().get()? - *x.get_value().get()?)
- *self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that y is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
//************************************************************************/
// We only return the computed x, y if neither of the points is infinity and self.x != other.y
// if self.is_infinity return other.clone()
// elif other.is_infinity return self.clone()
// elif self.x == other.x return infinity
// Otherwise return the computed points.
//************************************************************************/
// Now compute the output x
let x1 = conditionally_select2(
cs.namespace(|| "x1 = other.is_infinity ? self.x : x"),
&self.x,
&x,
&other.is_infinity,
)?;
let x = conditionally_select2(
cs.namespace(|| "x = self.is_infinity ? other.x : x1"),
&other.x,
&x1,
&self.is_infinity,
)?;
let y1 = conditionally_select2(
cs.namespace(|| "y1 = other.is_infinity ? self.y : y"),
&self.y,
&y,
&other.is_infinity,
)?;
let y = conditionally_select2(
cs.namespace(|| "y = self.is_infinity ? other.y : y1"),
&other.y,
&y1,
&self.is_infinity,
)?;
let is_infinity1 = select_num_or_zero2(
cs.namespace(|| "is_infinity1 = other.is_infinity ? self.is_infinity : 0"),
&self.is_infinity,
&other.is_infinity,
)?;
let is_infinity = conditionally_select2(
cs.namespace(|| "is_infinity = self.is_infinity ? other.is_infinity : is_infinity1"),
&other.is_infinity,
&is_infinity1,
&self.is_infinity,
)?;
Ok(Self { x, y, is_infinity })
}
/// Doubles the supplied point.
pub fn double<CS: ConstraintSystem<G::Base>>(&self, mut cs: CS) -> Result<Self, SynthesisError> {
//*************************************************************/
// lambda = (G::Base::from(3) * self.x * self.x + G::A())
// * (G::Base::from(2)) * self.y).invert().unwrap();
/*************************************************************/
// Compute tmp = (G::Base::ONE + G::Base::ONE)* self.y ? self != inf : 1
let tmp_actual = AllocatedNum::alloc(cs.namespace(|| "tmp_actual"), || {
Ok(*self.y.get_value().get()? + *self.y.get_value().get()?)
})?;
cs.enforce(
|| "check tmp_actual",
|lc| lc + CS::one() + CS::one(),
|lc| lc + self.y.get_variable(),
|lc| lc + tmp_actual.get_variable(),
);
let tmp = select_one_or_num2(cs.namespace(|| "tmp"), &tmp_actual, &self.is_infinity)?;
// Now compute lambda as (G::Base::from(3) * self.x * self.x + G::A()) * tmp_inv
let prod_1 = AllocatedNum::alloc(cs.namespace(|| "alloc prod 1"), || {
Ok(G::Base::from(3) * self.x.get_value().get()? * self.x.get_value().get()?)
})?;
cs.enforce(
|| "Check prod 1",
|lc| lc + (G::Base::from(3), self.x.get_variable()),
|lc| lc + self.x.get_variable(),
|lc| lc + prod_1.get_variable(),
);
let lambda = AllocatedNum::alloc(cs.namespace(|| "alloc lambda"), || {
let tmp_inv = if *self.is_infinity.get_value().get()? == G::Base::ONE {
// Return default value 1
G::Base::ONE
} else {
// Return the actual inverse
(*tmp.get_value().get()?).invert().unwrap()
};
Ok(tmp_inv * (*prod_1.get_value().get()? + G::get_curve_params().0))
})?;
cs.enforce(
|| "Check lambda",
|lc| lc + tmp.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + prod_1.get_variable() + (G::get_curve_params().0, CS::one()),
);
/*************************************************************/
// x = lambda * lambda - self.x - self.x;
/*************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
((*lambda.get_value().get()?) * (*lambda.get_value().get()?))
- *self.x.get_value().get()?
- self.x.get_value().get()?,
)
})?;
cs.enforce(
|| "Check x",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + self.x.get_variable(),
);
/*************************************************************/
// y = lambda * (self.x - x) - self.y;
/*************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
(*lambda.get_value().get()?) * (*self.x.get_value().get()? - x.get_value().get()?)
- self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check y",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
/*************************************************************/
// Only return the computed x and y if the point is not infinity
/*************************************************************/
// x
let x = select_zero_or_num2(cs.namespace(|| "final x"), &x, &self.is_infinity)?;
// y
let y = select_zero_or_num2(cs.namespace(|| "final y"), &y, &self.is_infinity)?;
// is_infinity
let is_infinity = self.is_infinity.clone();
Ok(Self { x, y, is_infinity })
}
/// A gadget for scalar multiplication, optimized to use incomplete addition law.
/// The optimization here is analogous to https://github.com/arkworks-rs/r1cs-std/blob/6d64f379a27011b3629cf4c9cb38b7b7b695d5a0/src/groups/curves/short_weierstrass/mod.rs#L295,
/// except we use complete addition law over affine coordinates instead of projective coordinates for the tail bits
pub fn scalar_mul<CS: ConstraintSystem<G::Base>>(
&self,
mut cs: CS,
scalar_bits: Vec<AllocatedBit>,
) -> Result<Self, SynthesisError> {
let split_len = core::cmp::min(scalar_bits.len(), (G::Base::NUM_BITS - 2) as usize);
let (incomplete_bits, complete_bits) = scalar_bits.split_at(split_len);
// we convert AllocatedPoint into AllocatedPointNonInfinity; we deal with the case where self.is_infinity = 1 below
let mut p = AllocatedPointNonInfinity::from_allocated_point(self);
// we assume the first bit to be 1, so we must initialize acc to self and double it
// we remove this assumption below
let mut acc = p.clone();
p = p.double_incomplete(cs.namespace(|| "double"))?;
// perform the double-and-add loop to compute the scalar mul using incomplete addition law
for (i, bit) in incomplete_bits.iter().enumerate().skip(1) {
let temp = acc.add_incomplete(cs.namespace(|| format!("add {i}")), &p)?;
acc = AllocatedPointNonInfinity::conditionally_select(
cs.namespace(|| format!("acc_iteration_{i}")),
&temp,
&acc,
&Boolean::from(bit.clone()),
)?;
p = p.double_incomplete(cs.namespace(|| format!("double {i}")))?;
}
// convert back to AllocatedPoint
let res = {
// we set acc.is_infinity = self.is_infinity
let acc = acc.to_allocated_point(&self.is_infinity)?;
// we remove the initial slack if bits[0] is as not as assumed (i.e., it is not 1)
let acc_minus_initial = {
let neg = self.negate(cs.namespace(|| "negate"))?;
acc.add(cs.namespace(|| "res minus self"), &neg)
}?;
AllocatedPoint::conditionally_select(
cs.namespace(|| "remove slack if necessary"),
&acc,
&acc_minus_initial,
&Boolean::from(scalar_bits[0].clone()),
)?
};
// when self.is_infinity = 1, return the default point, else return res
// we already set res.is_infinity to be self.is_infinity, so we do not need to set it here
let default = Self::default(cs.namespace(|| "default"))?;
let x = conditionally_select2(
cs.namespace(|| "check if self.is_infinity is zero (x)"),
&default.x,
&res.x,
&self.is_infinity,
)?;
let y = conditionally_select2(
cs.namespace(|| "check if self.is_infinity is zero (y)"),
&default.y,
&res.y,
&self.is_infinity,
)?;
// we now perform the remaining scalar mul using complete addition law
let mut acc = AllocatedPoint {
x,
y,
is_infinity: res.is_infinity,
};
let mut p_complete = p.to_allocated_point(&self.is_infinity)?;
for (i, bit) in complete_bits.iter().enumerate() {
let temp = acc.add(cs.namespace(|| format!("add_complete {i}")), &p_complete)?;
acc = AllocatedPoint::conditionally_select(
cs.namespace(|| format!("acc_complete_iteration_{i}")),
&temp,
&acc,
&Boolean::from(bit.clone()),
)?;
p_complete = p_complete.double(cs.namespace(|| format!("double_complete {i}")))?;
}
Ok(acc)
}
/// If condition outputs a otherwise outputs b
pub fn conditionally_select<CS: ConstraintSystem<G::Base>>(
mut cs: CS,
a: &Self,
b: &Self,
condition: &Boolean,
) -> Result<Self, SynthesisError> {
let x = conditionally_select(cs.namespace(|| "select x"), &a.x, &b.x, condition)?;
let y = conditionally_select(cs.namespace(|| "select y"), &a.y, &b.y, condition)?;
let is_infinity = conditionally_select(
cs.namespace(|| "select is_infinity"),
&a.is_infinity,
&b.is_infinity,
condition,
)?;
Ok(Self { x, y, is_infinity })
}
/// If condition outputs a otherwise infinity
pub fn select_point_or_infinity<CS: ConstraintSystem<G::Base>>(
mut cs: CS,
a: &Self,
condition: &Boolean,
) -> Result<Self, SynthesisError> {
let x = select_num_or_zero(cs.namespace(|| "select x"), &a.x, condition)?;
let y = select_num_or_zero(cs.namespace(|| "select y"), &a.y, condition)?;
let is_infinity = select_num_or_one(
cs.namespace(|| "select is_infinity"),
&a.is_infinity,
condition,
)?;
Ok(Self { x, y, is_infinity })
}
}
#[derive(Clone)]
/// AllocatedPoint but one that is guaranteed to be not infinity
pub struct AllocatedPointNonInfinity<G>
where
G: Group,
{
x: AllocatedNum<G::Base>,
y: AllocatedNum<G::Base>,
}
impl<G> AllocatedPointNonInfinity<G>
where
G: Group,
{
/// Creates a new AllocatedPointNonInfinity from the specified coordinates
pub fn new(x: AllocatedNum<G::Base>, y: AllocatedNum<G::Base>) -> Self {
Self { x, y }
}
/// Allocates a new point on the curve using coordinates provided by `coords`.
pub fn alloc<CS>(mut cs: CS, coords: Option<(G::Base, G::Base)>) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<G::Base>,
{
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
coords.map_or(Err(SynthesisError::AssignmentMissing), |c| Ok(c.0))
})?;
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
coords.map_or(Err(SynthesisError::AssignmentMissing), |c| Ok(c.1))
})?;
Ok(Self { x, y })
}
/// Turns an AllocatedPoint into an AllocatedPointNonInfinity (assumes it is not infinity)
pub fn from_allocated_point(p: &AllocatedPoint<G>) -> Self {
Self {
x: p.x.clone(),
y: p.y.clone(),
}
}
/// Returns an AllocatedPoint from an AllocatedPointNonInfinity
pub fn to_allocated_point(
&self,
is_infinity: &AllocatedNum<G::Base>,
) -> Result<AllocatedPoint<G>, SynthesisError> {
Ok(AllocatedPoint {
x: self.x.clone(),
y: self.y.clone(),
is_infinity: is_infinity.clone(),
})
}
/// Returns coordinates associated with the point.
pub fn get_coordinates(&self) -> (&AllocatedNum<G::Base>, &AllocatedNum<G::Base>) {
(&self.x, &self.y)
}
/// Add two points assuming self != +/- other
pub fn add_incomplete<CS>(&self, mut cs: CS, other: &Self) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<G::Base>,
{
// allocate a free variable that an honest prover sets to lambda = (y2-y1)/(x2-x1)
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
if *other.x.get_value().get()? == *self.x.get_value().get()? {
Ok(G::Base::ONE)
} else {
Ok(
(*other.y.get_value().get()? - *self.y.get_value().get()?)
* (*other.x.get_value().get()? - *self.x.get_value().get()?)
.invert()
.unwrap(),
)
}
})?;
cs.enforce(
|| "Check that lambda is computed correctly",
|lc| lc + lambda.get_variable(),
|lc| lc + other.x.get_variable() - self.x.get_variable(),
|lc| lc + other.y.get_variable() - self.y.get_variable(),
);
//************************************************************************/
// x = lambda * lambda - self.x - other.x;
//************************************************************************/
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
*lambda.get_value().get()? * lambda.get_value().get()?
- *self.x.get_value().get()?
- *other.x.get_value().get()?,
)
})?;
cs.enforce(
|| "check that x is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + self.x.get_variable() + other.x.get_variable(),
);
//************************************************************************/
// y = lambda * (self.x - x) - self.y;
//************************************************************************/
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
*lambda.get_value().get()? * (*self.x.get_value().get()? - *x.get_value().get()?)
- *self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that y is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
Ok(Self { x, y })
}
/// doubles the point; since this is called with a point not at infinity, it is guaranteed to be not infinity
pub fn double_incomplete<CS>(&self, mut cs: CS) -> Result<Self, SynthesisError>
where
CS: ConstraintSystem<G::Base>,
{
// lambda = (3 x^2 + a) / 2 * y
let x_sq = self.x.square(cs.namespace(|| "x_sq"))?;
let lambda = AllocatedNum::alloc(cs.namespace(|| "lambda"), || {
let n = G::Base::from(3) * x_sq.get_value().get()? + G::get_curve_params().0;
let d = G::Base::from(2) * *self.y.get_value().get()?;
if d == G::Base::ZERO {
Ok(G::Base::ONE)
} else {
Ok(n * d.invert().unwrap())
}
})?;
cs.enforce(
|| "Check that lambda is computed correctly",
|lc| lc + lambda.get_variable(),
|lc| lc + (G::Base::from(2), self.y.get_variable()),
|lc| lc + (G::Base::from(3), x_sq.get_variable()) + (G::get_curve_params().0, CS::one()),
);
let x = AllocatedNum::alloc(cs.namespace(|| "x"), || {
Ok(
*lambda.get_value().get()? * *lambda.get_value().get()?
- *self.x.get_value().get()?
- *self.x.get_value().get()?,
)
})?;
cs.enforce(
|| "check that x is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + lambda.get_variable(),
|lc| lc + x.get_variable() + (G::Base::from(2), self.x.get_variable()),
);
let y = AllocatedNum::alloc(cs.namespace(|| "y"), || {
Ok(
*lambda.get_value().get()? * (*self.x.get_value().get()? - *x.get_value().get()?)
- *self.y.get_value().get()?,
)
})?;
cs.enforce(
|| "Check that y is correct",
|lc| lc + lambda.get_variable(),
|lc| lc + self.x.get_variable() - x.get_variable(),
|lc| lc + y.get_variable() + self.y.get_variable(),
);
Ok(Self { x, y })
}
/// If condition outputs a otherwise outputs b
pub fn conditionally_select<CS: ConstraintSystem<G::Base>>(
mut cs: CS,
a: &Self,
b: &Self,
condition: &Boolean,
) -> Result<Self, SynthesisError> {
let x = conditionally_select(cs.namespace(|| "select x"), &a.x, &b.x, condition)?;
let y = conditionally_select(cs.namespace(|| "select y"), &a.y, &b.y, condition)?;
Ok(Self { x, y })
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::bellperson::{
r1cs::{NovaShape, NovaWitness},
{shape_cs::ShapeCS, solver::SatisfyingAssignment},
};
use ff::{Field, PrimeFieldBits};
use pasta_curves::{arithmetic::CurveAffine, group::Curve, pallas, vesta};
use rand::rngs::OsRng;
#[derive(Debug, Clone)]
pub struct Point<G>
where
G: Group,
{
x: G::Base,
y: G::Base,
is_infinity: bool,
}
#[cfg(test)]
impl<G> Point<G>
where
G: Group,
{
pub fn new(x: G::Base, y: G::Base, is_infinity: bool) -> Self {
Self { x, y, is_infinity }
}
pub fn random_vartime() -> Self {
loop {
let x = G::Base::random(&mut OsRng);
let y = (x.square() * x + G::get_curve_params().1).sqrt();
if y.is_some().unwrap_u8() == 1 {
return Self {
x,
y: y.unwrap(),
is_infinity: false,
};
}
}
}
/// Add any two points
pub fn add(&self, other: &Point<G>) -> Self {
if self.x == other.x {
// If self == other then call double
if self.y == other.y {
self.double()
} else {
// if self.x == other.x and self.y != other.y then return infinity
Self {
x: G::Base::ZERO,
y: G::Base::ZERO,
is_infinity: true,
}
}
} else {
self.add_internal(other)
}
}
/// Add two different points
pub fn add_internal(&self, other: &Point<G>) -> Self {
if self.is_infinity {
return other.clone();
}
if other.is_infinity {
return self.clone();
}
let lambda = (other.y - self.y) * (other.x - self.x).invert().unwrap();
let x = lambda * lambda - self.x - other.x;
let y = lambda * (self.x - x) - self.y;
Self {
x,
y,
is_infinity: false,
}
}
pub fn double(&self) -> Self {
if self.is_infinity {
return Self {
x: G::Base::ZERO,
y: G::Base::ZERO,
is_infinity: true,
};
}
let lambda = G::Base::from(3)
* self.x
* self.x
* ((G::Base::ONE + G::Base::ONE) * self.y).invert().unwrap();
let x = lambda * lambda - self.x - self.x;
let y = lambda * (self.x - x) - self.y;
Self {
x,
y,
is_infinity: false,
}
}
pub fn scalar_mul(&self, scalar: &G::Scalar) -> Self {
let mut res = Self {
x: G::Base::ZERO,
y: G::Base::ZERO,
is_infinity: true,
};
let bits = scalar.to_le_bits();
for i in (0..bits.len()).rev() {
res = res.double();
if bits[i] {
res = self.add(&res);
}
}
res
}
}
// Allocate a random point. Only used for testing
pub fn alloc_random_point<G: Group, CS: ConstraintSystem<G::Base>>(
mut cs: CS,
) -> Result<AllocatedPoint<G>, SynthesisError> {
// get a random point
let p = Point::<G>::random_vartime();
AllocatedPoint::alloc(cs.namespace(|| "alloc p"), Some((p.x, p.y, p.is_infinity)))
}
/// Make the point io
pub fn inputize_allocted_point<G: Group, CS: ConstraintSystem<G::Base>>(
p: &AllocatedPoint<G>,
mut cs: CS,
) -> Result<(), SynthesisError> {
let _ = p.x.inputize(cs.namespace(|| "Input point.x"));
let _ = p.y.inputize(cs.namespace(|| "Input point.y"));
let _ = p
.is_infinity
.inputize(cs.namespace(|| "Input point.is_infinity"));
Ok(())
}
#[test]
fn test_ecc_ops() {
test_ecc_ops_with::<pallas::Affine, pallas::Point>();
test_ecc_ops_with::<vesta::Affine, vesta::Point>();
}
fn test_ecc_ops_with<C, G>()
where
C: CurveAffine<Base = G::Base, ScalarExt = G::Scalar>,
G: Group,
{
// perform some curve arithmetic
let a = Point::<G>::random_vartime();
let b = Point::<G>::random_vartime();
let c = a.add(&b);
let d = a.double();
let s = <G as Group>::Scalar::random(&mut OsRng);
let e = a.scalar_mul(&s);
// perform the same computation by translating to curve types
let a_curve = C::from_xy(
C::Base::from_repr(a.x.to_repr()).unwrap(),
C::Base::from_repr(a.y.to_repr()).unwrap(),
)
.unwrap();
let b_curve = C::from_xy(
C::Base::from_repr(b.x.to_repr()).unwrap(),
C::Base::from_repr(b.y.to_repr()).unwrap(),
)
.unwrap();
let c_curve = (a_curve + b_curve).to_affine();
let d_curve = (a_curve + a_curve).to_affine();
let e_curve = a_curve
.mul(C::Scalar::from_repr(s.to_repr()).unwrap())
.to_affine();
// transform c, d, and e into curve types
let c_curve_2 = C::from_xy(
C::Base::from_repr(c.x.to_repr()).unwrap(),
C::Base::from_repr(c.y.to_repr()).unwrap(),
)
.unwrap();
let d_curve_2 = C::from_xy(
C::Base::from_repr(d.x.to_repr()).unwrap(),
C::Base::from_repr(d.y.to_repr()).unwrap(),
)
.unwrap();
let e_curve_2 = C::from_xy(
C::Base::from_repr(e.x.to_repr()).unwrap(),
C::Base::from_repr(e.y.to_repr()).unwrap(),
)
.unwrap();
// check that we have the same outputs
assert_eq!(c_curve, c_curve_2);
assert_eq!(d_curve, d_curve_2);
assert_eq!(e_curve, e_curve_2);
}
fn synthesize_smul<G, CS>(mut cs: CS) -> (AllocatedPoint<G>, AllocatedPoint<G>, G::Scalar)
where
G: Group,
CS: ConstraintSystem<G::Base>,
{
let a = alloc_random_point(cs.namespace(|| "a")).unwrap();
inputize_allocted_point(&a, cs.namespace(|| "inputize a")).unwrap();
let s = G::Scalar::random(&mut OsRng);
// Allocate bits for s
let bits: Vec<AllocatedBit> = s
.to_le_bits()
.into_iter()
.enumerate()
.map(|(i, bit)| AllocatedBit::alloc(cs.namespace(|| format!("bit {i}")), Some(bit)))
.collect::<Result<Vec<AllocatedBit>, SynthesisError>>()
.unwrap();
let e = a.scalar_mul(cs.namespace(|| "Scalar Mul"), bits).unwrap();
inputize_allocted_point(&e, cs.namespace(|| "inputize e")).unwrap();
(a, e, s)
}
#[test]
fn test_ecc_circuit_ops() {
test_ecc_circuit_ops_with::<pallas::Base, pallas::Scalar, pallas::Point, vesta::Point>();
test_ecc_circuit_ops_with::<vesta::Base, vesta::Scalar, vesta::Point, pallas::Point>();
}
fn test_ecc_circuit_ops_with<B, S, G1, G2>()
where
B: PrimeField,
S: PrimeField,
G1: Group<Base = B, Scalar = S>,
G2: Group<Base = S, Scalar = B>,
{
// First create the shape
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = synthesize_smul::<G1, _>(cs.namespace(|| "synthesize"));
println!("Number of constraints: {}", cs.num_constraints());
let (shape, ck) = cs.r1cs_shape();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let (a, e, s) = synthesize_smul::<G1, _>(cs.namespace(|| "synthesize"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &ck).unwrap();
let a_p: Point<G1> = Point::new(
a.x.get_value().unwrap(),
a.y.get_value().unwrap(),
a.is_infinity.get_value().unwrap() == <G1 as Group>::Base::ONE,
);
let e_p: Point<G1> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == <G1 as Group>::Base::ONE,
);
let e_new = a_p.scalar_mul(&s);
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
// Make sure that this is satisfiable
assert!(shape.is_sat(&ck, &inst, &witness).is_ok());
}
fn synthesize_add_equal<G, CS>(mut cs: CS) -> (AllocatedPoint<G>, AllocatedPoint<G>)
where
G: Group,
CS: ConstraintSystem<G::Base>,
{
let a = alloc_random_point(cs.namespace(|| "a")).unwrap();
inputize_allocted_point(&a, cs.namespace(|| "inputize a")).unwrap();
let e = a.add(cs.namespace(|| "add a to a"), &a).unwrap();
inputize_allocted_point(&e, cs.namespace(|| "inputize e")).unwrap();
(a, e)
}
#[test]
fn test_ecc_circuit_add_equal() {
test_ecc_circuit_add_equal_with::<pallas::Base, pallas::Scalar, pallas::Point, vesta::Point>();
test_ecc_circuit_add_equal_with::<vesta::Base, vesta::Scalar, vesta::Point, pallas::Point>();
}
fn test_ecc_circuit_add_equal_with<B, S, G1, G2>()
where
B: PrimeField,
S: PrimeField,
G1: Group<Base = B, Scalar = S>,
G2: Group<Base = S, Scalar = B>,
{
// First create the shape
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = synthesize_add_equal::<G1, _>(cs.namespace(|| "synthesize add equal"));
println!("Number of constraints: {}", cs.num_constraints());
let (shape, ck) = cs.r1cs_shape();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let (a, e) = synthesize_add_equal::<G1, _>(cs.namespace(|| "synthesize add equal"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &ck).unwrap();
let a_p: Point<G1> = Point::new(
a.x.get_value().unwrap(),
a.y.get_value().unwrap(),
a.is_infinity.get_value().unwrap() == <G1 as Group>::Base::ONE,
);
let e_p: Point<G1> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == <G1 as Group>::Base::ONE,
);
let e_new = a_p.add(&a_p);
assert!(e_p.x == e_new.x && e_p.y == e_new.y);
// Make sure that it is satisfiable
assert!(shape.is_sat(&ck, &inst, &witness).is_ok());
}
fn synthesize_add_negation<G, CS>(mut cs: CS) -> AllocatedPoint<G>
where
G: Group,
CS: ConstraintSystem<G::Base>,
{
let a = alloc_random_point(cs.namespace(|| "a")).unwrap();
inputize_allocted_point(&a, cs.namespace(|| "inputize a")).unwrap();
let mut b = a.clone();
b.y = AllocatedNum::alloc(cs.namespace(|| "allocate negation of a"), || {
Ok(G::Base::ZERO)
})
.unwrap();
inputize_allocted_point(&b, cs.namespace(|| "inputize b")).unwrap();
let e = a.add(cs.namespace(|| "add a to b"), &b).unwrap();
e
}
#[test]
fn test_ecc_circuit_add_negation() {
test_ecc_circuit_add_negation_with::<pallas::Base, pallas::Scalar, pallas::Point, vesta::Point>(
);
test_ecc_circuit_add_negation_with::<vesta::Base, vesta::Scalar, vesta::Point, pallas::Point>();
}
fn test_ecc_circuit_add_negation_with<B, S, G1, G2>()
where
B: PrimeField,
S: PrimeField,
G1: Group<Base = B, Scalar = S>,
G2: Group<Base = S, Scalar = B>,
{
// First create the shape
let mut cs: ShapeCS<G2> = ShapeCS::new();
let _ = synthesize_add_negation::<G1, _>(cs.namespace(|| "synthesize add equal"));
println!("Number of constraints: {}", cs.num_constraints());
let (shape, ck) = cs.r1cs_shape();
// Then the satisfying assignment
let mut cs: SatisfyingAssignment<G2> = SatisfyingAssignment::new();
let e = synthesize_add_negation::<G1, _>(cs.namespace(|| "synthesize add negation"));
let (inst, witness) = cs.r1cs_instance_and_witness(&shape, &ck).unwrap();
let e_p: Point<G1> = Point::new(
e.x.get_value().unwrap(),
e.y.get_value().unwrap(),
e.is_infinity.get_value().unwrap() == <G1 as Group>::Base::ONE,
);
assert!(e_p.is_infinity);
// Make sure that it is satisfiable
assert!(shape.is_sat(&ck, &inst, &witness).is_ok());
}
}