//! Demonstrates how to use Nova to produce a recursive proof of the correct execution of
|
|
//! iterations of the MinRoot function, thereby realizing a Nova-based verifiable delay function (VDF).
|
|
//! We currently execute a single iteration of the MinRoot function per step of Nova's recursion.
|
|
type G1 = pasta_curves::pallas::Point;
|
|
type G2 = pasta_curves::vesta::Point;
|
|
type S1 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G1>;
|
|
type S2 = nova_snark::spartan_with_ipa_pc::RelaxedR1CSSNARK<G2>;
|
|
use ::bellperson::{gadgets::num::AllocatedNum, ConstraintSystem, SynthesisError};
|
|
use ff::PrimeField;
|
|
use generic_array::typenum::U2;
|
|
use neptune::{
|
|
circuit::poseidon_hash,
|
|
poseidon::{Poseidon, PoseidonConstants},
|
|
Strength,
|
|
};
|
|
use nova_snark::{
|
|
traits::{Group, StepCircuit},
|
|
CompressedSNARK, PublicParams, RecursiveSNARK,
|
|
};
|
|
use num_bigint::BigUint;
|
|
use std::marker::PhantomData;
|
|
|
|
// A trivial test circuit that we will use on the secondary curve
|
|
#[derive(Clone, Debug)]
|
|
struct TrivialTestCircuit<F: PrimeField> {
|
|
_p: PhantomData<F>,
|
|
}
|
|
|
|
impl<F> StepCircuit<F> for TrivialTestCircuit<F>
|
|
where
|
|
F: PrimeField,
|
|
{
|
|
fn synthesize<CS: ConstraintSystem<F>>(
|
|
&self,
|
|
_cs: &mut CS,
|
|
z: AllocatedNum<F>,
|
|
) -> Result<AllocatedNum<F>, SynthesisError> {
|
|
Ok(z)
|
|
}
|
|
|
|
fn compute(&self, z: &F) -> F {
|
|
*z
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct MinRootCircuit<F: PrimeField> {
|
|
x_i: F,
|
|
y_i: F,
|
|
x_i_plus_1: F,
|
|
y_i_plus_1: F,
|
|
pc: PoseidonConstants<F, U2>,
|
|
}
|
|
|
|
impl<F: PrimeField> MinRootCircuit<F> {
|
|
// produces a sample non-deterministic advice, executing one invocation of MinRoot per step
|
|
fn new(num_steps: usize, x_0: &F, y_0: &F, pc: &PoseidonConstants<F, U2>) -> (F, Vec<Self>) {
|
|
// although this code is written generically, it is tailored to Pallas' scalar field
|
|
// (p - 3 / 5)
|
|
let exp = BigUint::parse_bytes(
|
|
b"23158417847463239084714197001737581570690445185553317903743794198714690358477",
|
|
10,
|
|
)
|
|
.unwrap();
|
|
|
|
let mut res = Vec::new();
|
|
let mut x_i = *x_0;
|
|
let mut y_i = *y_0;
|
|
for _i in 0..num_steps {
|
|
let x_i_plus_1 = (x_i + y_i).pow_vartime(exp.to_u64_digits()); // computes the fifth root of x_i + y_i
|
|
|
|
// sanity check
|
|
let sq = x_i_plus_1 * x_i_plus_1;
|
|
let quad = sq * sq;
|
|
let fifth = quad * x_i_plus_1;
|
|
debug_assert_eq!(fifth, x_i + y_i);
|
|
|
|
let y_i_plus_1 = x_i;
|
|
|
|
res.push(Self {
|
|
x_i,
|
|
y_i,
|
|
x_i_plus_1,
|
|
y_i_plus_1,
|
|
pc: pc.clone(),
|
|
});
|
|
|
|
x_i = x_i_plus_1;
|
|
y_i = y_i_plus_1;
|
|
}
|
|
|
|
let z0 = Poseidon::<F, U2>::new_with_preimage(&[*x_0, *y_0], pc).hash();
|
|
|
|
(z0, res)
|
|
}
|
|
}
|
|
|
|
impl<F> StepCircuit<F> for MinRootCircuit<F>
|
|
where
|
|
F: PrimeField,
|
|
{
|
|
fn synthesize<CS: ConstraintSystem<F>>(
|
|
&self,
|
|
cs: &mut CS,
|
|
z: AllocatedNum<F>,
|
|
) -> Result<AllocatedNum<F>, SynthesisError> {
|
|
// Allocate four variables for holding non-deterministic advice: x_i, y_i, x_i_plus_1, y_i_plus_1
|
|
let x_i = AllocatedNum::alloc(cs.namespace(|| "x_i"), || Ok(self.x_i))?;
|
|
let y_i = AllocatedNum::alloc(cs.namespace(|| "y_i"), || Ok(self.y_i))?;
|
|
let x_i_plus_1 = AllocatedNum::alloc(cs.namespace(|| "x_i_plus_1"), || Ok(self.x_i_plus_1))?;
|
|
|
|
// check that z = hash(x_i, y_i), where z is an output from the prior step
|
|
let z_hash = poseidon_hash(
|
|
cs.namespace(|| "input hash"),
|
|
vec![x_i.clone(), y_i.clone()],
|
|
&self.pc,
|
|
)?;
|
|
cs.enforce(
|
|
|| "z =? z_hash",
|
|
|lc| lc + z_hash.get_variable(),
|
|
|lc| lc + CS::one(),
|
|
|lc| lc + z.get_variable(),
|
|
);
|
|
|
|
// check the following conditions hold:
|
|
// (i) x_i_plus_1 = (x_i + y_i)^{1/5}, which can be more easily checked with x_i_plus_1^5 = x_i + y_i
|
|
// (ii) y_i_plus_1 = x_i
|
|
// (1) constraints for condition (i) are below
|
|
// (2) constraints for condition (ii) is avoided because we just used x_i wherever y_i_plus_1 is used
|
|
let x_i_plus_1_sq = x_i_plus_1.square(cs.namespace(|| "x_i_plus_1_sq"))?;
|
|
let x_i_plus_1_quad = x_i_plus_1_sq.square(cs.namespace(|| "x_i_plus_1_quad"))?;
|
|
let x_i_plus_1_pow_5 = x_i_plus_1_quad.mul(cs.namespace(|| "x_i_plus_1_pow_5"), &x_i_plus_1)?;
|
|
cs.enforce(
|
|
|| "x_i_plus_1_pow_5 = x_i + y_i",
|
|
|lc| lc + x_i_plus_1_pow_5.get_variable(),
|
|
|lc| lc + CS::one(),
|
|
|lc| lc + x_i.get_variable() + y_i.get_variable(),
|
|
);
|
|
|
|
// return hash(x_i_plus_1, y_i_plus_1) since Nova circuits expect a single output
|
|
poseidon_hash(
|
|
cs.namespace(|| "output hash"),
|
|
vec![x_i_plus_1, x_i.clone()],
|
|
&self.pc,
|
|
)
|
|
}
|
|
|
|
fn compute(&self, z: &F) -> F {
|
|
// sanity check
|
|
let z_hash = Poseidon::<F, U2>::new_with_preimage(&[self.x_i, self.y_i], &self.pc).hash();
|
|
debug_assert_eq!(z, &z_hash);
|
|
|
|
// compute output hash using advice
|
|
Poseidon::<F, U2>::new_with_preimage(&[self.x_i_plus_1, self.y_i_plus_1], &self.pc).hash()
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
let pc = PoseidonConstants::<<G1 as Group>::Scalar, U2>::new_with_strength(Strength::Standard);
|
|
|
|
let circuit_primary = MinRootCircuit {
|
|
x_i: <G1 as Group>::Scalar::zero(),
|
|
y_i: <G1 as Group>::Scalar::zero(),
|
|
x_i_plus_1: <G1 as Group>::Scalar::zero(),
|
|
y_i_plus_1: <G1 as Group>::Scalar::zero(),
|
|
pc: pc.clone(),
|
|
};
|
|
|
|
let circuit_secondary = TrivialTestCircuit {
|
|
_p: Default::default(),
|
|
};
|
|
|
|
// produce public parameters
|
|
let pp = PublicParams::<
|
|
G1,
|
|
G2,
|
|
MinRootCircuit<<G1 as Group>::Scalar>,
|
|
TrivialTestCircuit<<G2 as Group>::Scalar>,
|
|
>::setup(circuit_primary, circuit_secondary.clone());
|
|
|
|
// produce non-deterministic advice
|
|
let num_steps = 3;
|
|
let (z0_primary, minroot_circuits) = MinRootCircuit::new(
|
|
num_steps,
|
|
&<G1 as Group>::Scalar::zero(),
|
|
&<G1 as Group>::Scalar::one(),
|
|
&pc,
|
|
);
|
|
let z0_secondary = <G2 as Group>::Scalar::zero();
|
|
|
|
type C1 = MinRootCircuit<<G1 as Group>::Scalar>;
|
|
type C2 = TrivialTestCircuit<<G2 as Group>::Scalar>;
|
|
// produce a recursive SNARK
|
|
println!("Generating a RecursiveSNARK...");
|
|
let mut recursive_snark: Option<RecursiveSNARK<G1, G2, C1, C2>> = None;
|
|
|
|
for (i, circuit_primary) in minroot_circuits.iter().take(num_steps).enumerate() {
|
|
let res = RecursiveSNARK::prove_step(
|
|
&pp,
|
|
recursive_snark,
|
|
circuit_primary.clone(),
|
|
circuit_secondary.clone(),
|
|
z0_primary,
|
|
z0_secondary,
|
|
);
|
|
assert!(res.is_ok());
|
|
println!("RecursiveSNARK::prove_step {}: {:?}", i, res.is_ok());
|
|
recursive_snark = Some(res.unwrap());
|
|
}
|
|
|
|
assert!(recursive_snark.is_some());
|
|
let recursive_snark = recursive_snark.unwrap();
|
|
|
|
// verify the recursive SNARK
|
|
println!("Verifying a RecursiveSNARK...");
|
|
let res = recursive_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
|
|
println!("RecursiveSNARK::verify: {:?}", res.is_ok());
|
|
assert!(res.is_ok());
|
|
|
|
// produce a compressed SNARK
|
|
println!("Generating a CompressedSNARK...");
|
|
let res = CompressedSNARK::<_, _, _, _, S1, S2>::prove(&pp, &recursive_snark);
|
|
println!("CompressedSNARK::prove: {:?}", res.is_ok());
|
|
assert!(res.is_ok());
|
|
let compressed_snark = res.unwrap();
|
|
|
|
// verify the compressed SNARK
|
|
println!("Verifying a CompressedSNARK...");
|
|
let res = compressed_snark.verify(&pp, num_steps, z0_primary, z0_secondary);
|
|
println!("CompressedSNARK::verify: {:?}", res.is_ok());
|
|
assert!(res.is_ok());
|
|
}
|