package arbo import ( "bytes" "fmt" ) type node struct { l *node r *node k []byte v []byte path []bool h []byte } type params struct { maxLevels int hashFunction HashFunction emptyHash []byte } // vt stands for virtual tree. It's a tree that does not have any computed hash // while placing the leafs. Once all the leafs are placed, it computes all the // hashes. In this way, each node hash is only computed one time. type vt struct { root *node params *params } func newVT(maxLevels int, hash HashFunction) vt { return vt{ root: nil, params: ¶ms{ maxLevels: maxLevels, hashFunction: hash, emptyHash: make([]byte, hash.Len()), // empty }, } } func (t *vt) add(k, v []byte) error { leaf := newLeafNode(t.params, k, v) if t.root == nil { t.root = leaf return nil } if err := t.root.add(t.params, 0, leaf); err != nil { return err } return nil } func newLeafNode(p *params, k, v []byte) *node { keyPath := make([]byte, p.hashFunction.Len()) copy(keyPath[:], k) path := getPath(p.maxLevels, keyPath) n := &node{ k: k, v: v, path: path, } return n } type virtualNodeType int const ( vtEmpty = 0 // for convenience uses same value that PrefixValueEmpty vtLeaf = 1 // for convenience uses same value that PrefixValueLeaf vtMid = 2 // for convenience uses same value that PrefixValueIntermediate ) func (n *node) typ() virtualNodeType { if n.l == nil && n.r == nil && n.k != nil { return vtLeaf } if n.l != nil || n.r != nil { return vtMid } return vtEmpty } func (n *node) add(p *params, currLvl int, leaf *node) error { if currLvl > p.maxLevels-1 { return fmt.Errorf("max virtual level %d", currLvl) } if n == nil { // n = leaf // TMP! return nil } t := n.typ() switch t { case vtMid: if leaf.path[currLvl] { //right if n.r == nil { // empty sub-node, add the leaf here n.r = leaf } if err := n.r.add(p, currLvl+1, leaf); err != nil { return err } } else { if n.l == nil { // empty sub-node, add the leaf here n.l = leaf } if err := n.l.add(p, currLvl+1, leaf); err != nil { return err } } case vtLeaf: if bytes.Equal(n.k, leaf.k) { return fmt.Errorf("key already exists") } oldLeaf := &node{ k: n.k, v: n.v, path: n.path, } // remove values from current node (converting it to mid node) n.k = nil n.v = nil n.path = nil if err := n.downUntilDivergence(p, currLvl, oldLeaf, leaf); err != nil { return err } default: return fmt.Errorf("ERR") } return nil } func (n *node) downUntilDivergence(p *params, currLvl int, oldLeaf, newLeaf *node) error { if currLvl > p.maxLevels-1 { return fmt.Errorf("max virtual level %d", currLvl) } // if oldLeaf.path[currLvl+1] != newLeaf.path[currLvl+1] { if oldLeaf.path[currLvl] != newLeaf.path[currLvl] { // reached divergence in next level // if newLeaf.path[currLvl+1] { if newLeaf.path[currLvl] { n.l = oldLeaf n.r = newLeaf } else { n.l = newLeaf n.r = oldLeaf } return nil } // no divergence yet, continue going down if newLeaf.path[currLvl] { // right n.r = &node{} if err := n.r.downUntilDivergence(p, currLvl+1, oldLeaf, newLeaf); err != nil { return err } } else { // left n.l = &node{} if err := n.l.downUntilDivergence(p, currLvl+1, oldLeaf, newLeaf); err != nil { return err } } return nil } func (n *node) computeHashes() ([]kv, error) { return nil, nil }