package arbo import ( "encoding/hex" "fmt" "math/big" "testing" "time" qt "github.com/frankban/quicktest" "github.com/iden3/go-merkletree/db/memory" ) func TestAddBatchCaseA(t *testing.T) { c := qt.New(t) nLeafs := 1024 tree, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree.db.Close() start := time.Now() for i := 0; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) if err := tree.Add(k, v); err != nil { t.Fatal(err) } } fmt.Println(time.Since(start)) tree2, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree2.db.Close() var keys, values [][]byte for i := 0; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) keys = append(keys, k) values = append(values, v) } start = time.Now() indexes, err := tree2.AddBatchOpt(keys, values) c.Assert(err, qt.IsNil) fmt.Println(time.Since(start)) c.Check(len(indexes), qt.Equals, 0) // check that both trees roots are equal c.Check(tree2.Root(), qt.DeepEquals, tree.Root()) } func TestAddBatchCaseB(t *testing.T) { c := qt.New(t) nLeafs := 1024 tree, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree.db.Close() start := time.Now() for i := 0; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) if err := tree.Add(k, v); err != nil { t.Fatal(err) } } fmt.Println(time.Since(start)) tree2, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree2.db.Close() // add the initial leafs to fill a bit the tree before calling the // AddBatch method for i := 0; i < 99; i++ { // TMP TODO use const minLeafsThreshold-1 once ready k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) if err := tree2.Add(k, v); err != nil { t.Fatal(err) } } var keys, values [][]byte for i := 99; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) keys = append(keys, k) values = append(values, v) } start = time.Now() indexes, err := tree2.AddBatchOpt(keys, values) c.Assert(err, qt.IsNil) fmt.Println(time.Since(start)) c.Check(len(indexes), qt.Equals, 0) // check that both trees roots are equal c.Check(tree2.Root(), qt.DeepEquals, tree.Root()) } func TestGetKeysAtLevel(t *testing.T) { c := qt.New(t) tree, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree.db.Close() for i := 0; i < 32; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) if err := tree.Add(k, v); err != nil { t.Fatal(err) } } keys, err := tree.getKeysAtLevel(2) c.Assert(err, qt.IsNil) expected := []string{ "a5d5f14fce7348e40751496cf25d107d91b0bd043435b9577d778a01f8aa6111", "e9e8dd9b28a7f81d1ff34cb5cefc0146dd848b31031a427b79bdadb62e7f6910", } for i := 0; i < len(keys); i++ { c.Assert(hex.EncodeToString(keys[i]), qt.Equals, expected[i]) } keys, err = tree.getKeysAtLevel(3) c.Assert(err, qt.IsNil) expected = []string{ "9f12c13e52bca96ad4882a26558e48ab67ddd63e062b839207e893d961390f01", "16d246dd6826ec7346c7328f11c4261facf82d4689f33263ff6e207956a77f21", "4a22cc901c6337daa17a431fa20170684b710e5f551509511492ec24e81a8f2f", "470d61abcbd154977bffc9a9ec5a8daff0caabcf2a25e8441f604c79daa0f82d", } for i := 0; i < len(keys); i++ { c.Assert(hex.EncodeToString(keys[i]), qt.Equals, expected[i]) } keys, err = tree.getKeysAtLevel(4) c.Assert(err, qt.IsNil) expected = []string{ "7a5d1c81f7b96318012de3417e53d4f13df5b1337718651cd29d0cb0a66edd20", "3408213e4e844bdf3355eb8781c74e31626812898c2dbe141ed6d2c92256fc1c", "dfd8a4d0b6954a3e9f3892e655b58d456eeedf9367f27dfdd9bc2dd6a5577312", "9e99fbec06fb2a6725997c12c4995f62725eb4cce4808523a5a5e80cca64b007", "0befa1e070231dbf4e8ff841c05878cdec823e0c09594c24910a248b3ff5a628", "b7131b0a15c772a57005a4dc5d0d6dd4b3414f5d9ee7408ce5e86c5ab3520e04", "6d1abe0364077846a56bab1deb1a04883eb796b74fe531a7676a9a370f83ab21", "4270116394bede69cf9cd72069eca018238080380bef5de75be8dcbbe968e105", } for i := 0; i < len(keys); i++ { c.Assert(hex.EncodeToString(keys[i]), qt.Equals, expected[i]) } } func TestSplitInBuckets(t *testing.T) { c := qt.New(t) nLeafs := 16 kvs := make([]kv, nLeafs) for i := 0; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) keyPath := make([]byte, 32) copy(keyPath[:], k) kvs[i].pos = i kvs[i].keyPath = k kvs[i].k = k kvs[i].v = v } // check keyToBucket results for 4 buckets & 8 keys c.Assert(keyToBucket(kvs[0].k, 4), qt.Equals, 0) c.Assert(keyToBucket(kvs[1].k, 4), qt.Equals, 2) c.Assert(keyToBucket(kvs[2].k, 4), qt.Equals, 1) c.Assert(keyToBucket(kvs[3].k, 4), qt.Equals, 3) c.Assert(keyToBucket(kvs[4].k, 4), qt.Equals, 0) c.Assert(keyToBucket(kvs[5].k, 4), qt.Equals, 2) c.Assert(keyToBucket(kvs[6].k, 4), qt.Equals, 1) c.Assert(keyToBucket(kvs[7].k, 4), qt.Equals, 3) // check keyToBucket results for 8 buckets & 8 keys c.Assert(keyToBucket(kvs[0].k, 8), qt.Equals, 0) c.Assert(keyToBucket(kvs[1].k, 8), qt.Equals, 4) c.Assert(keyToBucket(kvs[2].k, 8), qt.Equals, 2) c.Assert(keyToBucket(kvs[3].k, 8), qt.Equals, 6) c.Assert(keyToBucket(kvs[4].k, 8), qt.Equals, 1) c.Assert(keyToBucket(kvs[5].k, 8), qt.Equals, 5) c.Assert(keyToBucket(kvs[6].k, 8), qt.Equals, 3) c.Assert(keyToBucket(kvs[7].k, 8), qt.Equals, 7) buckets := splitInBuckets(kvs, 4) expected := [][]string{ { "00000000", // bucket 0 "08000000", "04000000", "0c000000", }, { "02000000", // bucket 1 "0a000000", "06000000", "0e000000", }, { "01000000", // bucket 2 "09000000", "05000000", "0d000000", }, { "03000000", // bucket 3 "0b000000", "07000000", "0f000000", }, } for i := 0; i < len(buckets); i++ { sortKvs(buckets[i]) c.Assert(len(buckets[i]), qt.Equals, len(expected[i])) for j := 0; j < len(buckets[i]); j++ { c.Check(hex.EncodeToString(buckets[i][j].k[:4]), qt.Equals, expected[i][j]) } } } func TestAddBatchCaseC(t *testing.T) { c := qt.New(t) nLeafs := 1024 tree, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree.db.Close() start := time.Now() for i := 0; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) if err := tree.Add(k, v); err != nil { t.Fatal(err) } } fmt.Println(time.Since(start)) tree2, err := NewTree(memory.NewMemoryStorage(), 100, HashFunctionPoseidon) c.Assert(err, qt.IsNil) defer tree2.db.Close() // add the initial leafs to fill a bit the tree before calling the // AddBatch method for i := 0; i < 101; i++ { // TMP TODO use const minLeafsThreshold-1 once ready k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) if err := tree2.Add(k, v); err != nil { t.Fatal(err) } } // tree2.PrintGraphviz(nil) var keys, values [][]byte for i := 101; i < nLeafs; i++ { k := BigIntToBytes(big.NewInt(int64(i))) v := BigIntToBytes(big.NewInt(int64(i * 2))) keys = append(keys, k) values = append(values, v) } start = time.Now() indexes, err := tree2.AddBatchOpt(keys, values) c.Assert(err, qt.IsNil) fmt.Println(time.Since(start)) c.Check(len(indexes), qt.Equals, 0) // check that both trees roots are equal c.Check(tree2.Root(), qt.DeepEquals, tree.Root()) // tree.PrintGraphviz(nil) // tree2.PrintGraphviz(nil) // // tree.PrintGraphvizFirstNLevels(nil, 4) // // tree2.PrintGraphvizFirstNLevels(nil, 4) // fmt.Println("TREE") // printLeafs("t1.txt", tree) // fmt.Println("TREE2") // printLeafs("t2.txt", tree2) } // func printLeafs(name string, t *Tree) { // w := bytes.NewBufferString("") // // err := t.Iterate(func(k, v []byte) { // if v[0] != PrefixValueLeaf { // return // } // leafK, _ := readLeafValue(v) // fmt.Fprintf(w, hex.EncodeToString(leafK[:4])+"\n") // }) // if err != nil { // panic(err) // } // err = ioutil.WriteFile(name, w.Bytes(), 0644) // if err != nil { // panic(err) // } // // } // func TestComputeCosts(t *testing.T) { // fmt.Println(computeSimpleAddCost(10)) // fmt.Println(computeBottomUpAddCost(10)) // // fmt.Println(computeSimpleAddCost(1024)) // fmt.Println(computeBottomUpAddCost(1024)) // } // TODO test tree with nLeafs > minLeafsThreshold, but that at level L, there is // less keys than nBuckets (so CASE C could be applied if first few leafs are // added to balance the tree)