// Package arbo > vt.go implements the Virtual Tree, which computes a tree
|
|
// without computing any hash. With the idea of once all the leafs are placed in
|
|
// their positions, the hashes can be computed, avoiding computing a node hash
|
|
// more than one time.
|
|
package arbo
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"io"
|
|
)
|
|
|
|
type node struct {
|
|
l *node
|
|
r *node
|
|
k []byte
|
|
v []byte
|
|
path []bool
|
|
h []byte
|
|
}
|
|
|
|
type params struct {
|
|
maxLevels int
|
|
hashFunction HashFunction
|
|
emptyHash []byte
|
|
}
|
|
|
|
// vt stands for virtual tree. It's a tree that does not have any computed hash
|
|
// while placing the leafs. Once all the leafs are placed, it computes all the
|
|
// hashes. In this way, each node hash is only computed one time.
|
|
type vt struct {
|
|
root *node
|
|
params *params
|
|
}
|
|
|
|
func newVT(maxLevels int, hash HashFunction) vt {
|
|
return vt{
|
|
root: nil,
|
|
params: ¶ms{
|
|
maxLevels: maxLevels,
|
|
hashFunction: hash,
|
|
emptyHash: make([]byte, hash.Len()), // empty
|
|
},
|
|
}
|
|
}
|
|
|
|
func (t *vt) add(fromLvl int, k, v []byte) error {
|
|
leaf := newLeafNode(t.params, k, v)
|
|
if t.root == nil {
|
|
t.root = leaf
|
|
return nil
|
|
}
|
|
|
|
if err := t.root.add(t.params, fromLvl, leaf); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// computeHashes should be called after all the vt.add is used, once all the
|
|
// leafs are in the tree
|
|
func (t *vt) computeHashes() ([][2][]byte, error) {
|
|
var pairs [][2][]byte
|
|
var err error
|
|
pairs, err = t.root.computeHashes(t.params, pairs)
|
|
if err != nil {
|
|
return pairs, err
|
|
}
|
|
return pairs, nil
|
|
}
|
|
|
|
func newLeafNode(p *params, k, v []byte) *node {
|
|
keyPath := make([]byte, p.hashFunction.Len())
|
|
copy(keyPath[:], k)
|
|
path := getPath(p.maxLevels, keyPath)
|
|
n := &node{
|
|
k: k,
|
|
v: v,
|
|
path: path,
|
|
}
|
|
return n
|
|
}
|
|
|
|
type virtualNodeType int
|
|
|
|
const (
|
|
vtEmpty = 0 // for convenience uses same value that PrefixValueEmpty
|
|
vtLeaf = 1 // for convenience uses same value that PrefixValueLeaf
|
|
vtMid = 2 // for convenience uses same value that PrefixValueIntermediate
|
|
)
|
|
|
|
func (n *node) typ() virtualNodeType {
|
|
if n.l == nil && n.r == nil && n.k != nil {
|
|
return vtLeaf
|
|
}
|
|
if n.l != nil || n.r != nil {
|
|
return vtMid
|
|
}
|
|
return vtEmpty
|
|
}
|
|
|
|
func (n *node) add(p *params, currLvl int, leaf *node) error {
|
|
if currLvl > p.maxLevels-1 {
|
|
return fmt.Errorf("max virtual level %d", currLvl)
|
|
}
|
|
|
|
if n == nil {
|
|
// n = leaf // TMP!
|
|
return nil
|
|
}
|
|
|
|
t := n.typ()
|
|
switch t {
|
|
case vtMid:
|
|
if leaf.path[currLvl] {
|
|
//right
|
|
if n.r == nil {
|
|
// empty sub-node, add the leaf here
|
|
n.r = leaf
|
|
return nil
|
|
}
|
|
if err := n.r.add(p, currLvl+1, leaf); err != nil {
|
|
return err
|
|
}
|
|
} else {
|
|
if n.l == nil {
|
|
// empty sub-node, add the leaf here
|
|
n.l = leaf
|
|
return nil
|
|
}
|
|
if err := n.l.add(p, currLvl+1, leaf); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
case vtLeaf:
|
|
if bytes.Equal(n.k, leaf.k) {
|
|
return fmt.Errorf("key already exists. Existing node: %s, trying to add node: %s",
|
|
hex.EncodeToString(n.k), hex.EncodeToString(leaf.k))
|
|
}
|
|
|
|
oldLeaf := &node{
|
|
k: n.k,
|
|
v: n.v,
|
|
path: n.path,
|
|
}
|
|
// remove values from current node (converting it to mid node)
|
|
n.k = nil
|
|
n.v = nil
|
|
n.h = nil
|
|
n.path = nil
|
|
if err := n.downUntilDivergence(p, currLvl, oldLeaf, leaf); err != nil {
|
|
return err
|
|
}
|
|
case vtEmpty:
|
|
panic(fmt.Errorf("EMPTY %v", n)) // TODO TMP
|
|
default:
|
|
return fmt.Errorf("ERR")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (n *node) downUntilDivergence(p *params, currLvl int, oldLeaf, newLeaf *node) error {
|
|
if currLvl > p.maxLevels-1 {
|
|
return fmt.Errorf("max virtual level %d", currLvl)
|
|
}
|
|
|
|
if oldLeaf.path[currLvl] != newLeaf.path[currLvl] {
|
|
// reached divergence in next level
|
|
if newLeaf.path[currLvl] {
|
|
n.l = oldLeaf
|
|
n.r = newLeaf
|
|
} else {
|
|
n.l = newLeaf
|
|
n.r = oldLeaf
|
|
}
|
|
return nil
|
|
}
|
|
// no divergence yet, continue going down
|
|
if newLeaf.path[currLvl] {
|
|
// right
|
|
n.r = &node{}
|
|
if err := n.r.downUntilDivergence(p, currLvl+1, oldLeaf, newLeaf); err != nil {
|
|
return err
|
|
}
|
|
} else {
|
|
// left
|
|
n.l = &node{}
|
|
if err := n.l.downUntilDivergence(p, currLvl+1, oldLeaf, newLeaf); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// returns an array of key-values to store in the db
|
|
func (n *node) computeHashes(p *params, pairs [][2][]byte) ([][2][]byte, error) {
|
|
if pairs == nil {
|
|
pairs = [][2][]byte{}
|
|
}
|
|
var err error
|
|
t := n.typ()
|
|
switch t {
|
|
case vtLeaf:
|
|
leafKey, leafValue, err := newLeafValue(p.hashFunction, n.k, n.v)
|
|
if err != nil {
|
|
return pairs, err
|
|
}
|
|
n.h = leafKey
|
|
kv := [2][]byte{leafKey, leafValue}
|
|
pairs = append(pairs, kv)
|
|
case vtMid:
|
|
if n.l != nil {
|
|
pairs, err = n.l.computeHashes(p, pairs)
|
|
if err != nil {
|
|
return pairs, err
|
|
}
|
|
} else {
|
|
n.l = &node{
|
|
h: p.emptyHash,
|
|
}
|
|
}
|
|
if n.r != nil {
|
|
pairs, err = n.r.computeHashes(p, pairs)
|
|
if err != nil {
|
|
return pairs, err
|
|
}
|
|
} else {
|
|
n.r = &node{
|
|
h: p.emptyHash,
|
|
}
|
|
}
|
|
// once the sub nodes are computed, can compute the current node
|
|
// hash
|
|
k, v, err := newIntermediate(p.hashFunction, n.l.h, n.r.h)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
n.h = k
|
|
kv := [2][]byte{k, v}
|
|
pairs = append(pairs, kv)
|
|
default:
|
|
return nil, fmt.Errorf("ERR TMP") // TODO
|
|
}
|
|
|
|
return pairs, nil
|
|
}
|
|
|
|
//nolint:unused
|
|
func (t *vt) graphviz(w io.Writer) error {
|
|
fmt.Fprintf(w, `digraph hierarchy {
|
|
node [fontname=Monospace,fontsize=10,shape=box]
|
|
`)
|
|
if _, err := t.root.graphviz(w, t.params, 0); err != nil {
|
|
return err
|
|
}
|
|
fmt.Fprintf(w, "}\n")
|
|
return nil
|
|
}
|
|
|
|
//nolint:unused
|
|
func (n *node) graphviz(w io.Writer, p *params, nEmpties int) (int, error) {
|
|
nChars := 4 // TODO move to global constant
|
|
if n == nil {
|
|
return nEmpties, nil
|
|
}
|
|
|
|
t := n.typ()
|
|
switch t {
|
|
case vtLeaf:
|
|
leafKey, _, err := newLeafValue(p.hashFunction, n.k, n.v)
|
|
if err != nil {
|
|
return nEmpties, err
|
|
}
|
|
fmt.Fprintf(w, "\"%p\" [style=filled,label=\"%v\"];\n", n, hex.EncodeToString(leafKey[:nChars]))
|
|
|
|
fmt.Fprintf(w, "\"%p\" -> {\"k:%v\\nv:%v\"}\n", n,
|
|
hex.EncodeToString(n.k[:nChars]),
|
|
hex.EncodeToString(n.v[:nChars]))
|
|
fmt.Fprintf(w, "\"k:%v\\nv:%v\" [style=dashed]\n",
|
|
hex.EncodeToString(n.k[:nChars]),
|
|
hex.EncodeToString(n.v[:nChars]))
|
|
case vtMid:
|
|
fmt.Fprintf(w, "\"%p\" [label=\"\"];\n", n)
|
|
|
|
lStr := fmt.Sprintf("%p", n.l)
|
|
rStr := fmt.Sprintf("%p", n.r)
|
|
eStr := ""
|
|
if n.l == nil {
|
|
lStr = fmt.Sprintf("empty%v", nEmpties)
|
|
eStr += fmt.Sprintf("\"%v\" [style=dashed,label=0];\n",
|
|
lStr)
|
|
nEmpties++
|
|
}
|
|
if n.r == nil {
|
|
rStr = fmt.Sprintf("empty%v", nEmpties)
|
|
eStr += fmt.Sprintf("\"%v\" [style=dashed,label=0];\n",
|
|
rStr)
|
|
nEmpties++
|
|
}
|
|
fmt.Fprintf(w, "\"%p\" -> {\"%v\" \"%v\"}\n", n, lStr, rStr)
|
|
fmt.Fprint(w, eStr)
|
|
nEmpties, err := n.l.graphviz(w, p, nEmpties)
|
|
if err != nil {
|
|
return nEmpties, err
|
|
}
|
|
nEmpties, err = n.r.graphviz(w, p, nEmpties)
|
|
if err != nil {
|
|
return nEmpties, err
|
|
}
|
|
|
|
case vtEmpty:
|
|
default:
|
|
return nEmpties, fmt.Errorf("ERR")
|
|
}
|
|
|
|
return nEmpties, nil
|
|
}
|
|
|
|
//nolint:unused
|
|
func (t *vt) printGraphviz() error {
|
|
w := bytes.NewBufferString("")
|
|
fmt.Fprintf(w,
|
|
"--------\nGraphviz:\n")
|
|
err := t.graphviz(w)
|
|
if err != nil {
|
|
fmt.Println(w)
|
|
return err
|
|
}
|
|
fmt.Fprintf(w,
|
|
"End of Graphviz --------\n")
|
|
fmt.Println(w)
|
|
return nil
|
|
}
|