package arbo
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"sort"
|
|
)
|
|
|
|
/*
|
|
|
|
|
|
AddBatch design
|
|
===============
|
|
|
|
|
|
CASE A: Empty Tree --> if tree is empty (root==0)
|
|
=================================================
|
|
- Build the full tree from bottom to top (from all the leaf to the root)
|
|
|
|
|
|
CASE B: ALMOST CASE A, Almost empty Tree --> if Tree has numLeafs < numBuckets
|
|
==============================================================================
|
|
- Get the Leafs (key & value) (iterate the tree from the current root getting
|
|
the leafs)
|
|
- Create a new empty Tree
|
|
- Do CASE A for the new Tree, giving the already existing key&values (leafs)
|
|
from the original Tree + the new key&values to be added from the AddBatch call
|
|
|
|
R
|
|
/ \
|
|
A *
|
|
/ \
|
|
B C
|
|
|
|
|
|
CASE C: ALMOST CASE B --> if Tree has few Leafs (but numLeafs>=numBuckets)
|
|
==============================================================================
|
|
- Use A, B, G, F as Roots of subtrees
|
|
- Do CASE B for each subtree
|
|
- Then go from L to the Root
|
|
|
|
R
|
|
/ \
|
|
/ \
|
|
/ \
|
|
* *
|
|
/ | / \
|
|
/ | / \
|
|
/ | / \
|
|
L: A B G D
|
|
/ \
|
|
/ \
|
|
/ \
|
|
C *
|
|
/ \
|
|
/ \
|
|
/ \
|
|
D E
|
|
|
|
|
|
|
|
CASE D: Already populated Tree
|
|
==============================
|
|
- Use A, B, C, D as subtree
|
|
- Sort the Keys in Buckets that share the initial part of the path
|
|
- For each subtree add there the new leafs
|
|
|
|
R
|
|
/ \
|
|
/ \
|
|
/ \
|
|
* *
|
|
/ | / \
|
|
/ | / \
|
|
/ | / \
|
|
L: A B C D
|
|
/\ /\ / \ / \
|
|
... ... ... ... ... ...
|
|
|
|
|
|
CASE E: Already populated Tree Unbalanced
|
|
=========================================
|
|
- Need to fill M1 and M2, and then will be able to use CASE D
|
|
- Search for M1 & M2 in the inputed Keys
|
|
- Add M1 & M2 to the Tree
|
|
- From here can use CASE D
|
|
|
|
R
|
|
/ \
|
|
/ \
|
|
/ \
|
|
* *
|
|
| \
|
|
| \
|
|
| \
|
|
L: M1 * M2 * (where M1 and M2 are empty)
|
|
/ | /
|
|
/ | /
|
|
/ | /
|
|
A * *
|
|
/ \ | \
|
|
/ \ | \
|
|
/ \ | \
|
|
B * * C
|
|
/ \ |\
|
|
... ... | \
|
|
| \
|
|
D E
|
|
|
|
|
|
|
|
Algorithm decision
|
|
==================
|
|
- if nLeafs==0 (root==0): CASE A
|
|
- if nLeafs<nBuckets: CASE B
|
|
- if nLeafs>=nBuckets && nLeafs < minLeafsThreshold: CASE C
|
|
- else: CASE D & CASE E
|
|
|
|
|
|
- Multiple tree.Add calls: O(n log n)
|
|
- Used in: cases A, B, C
|
|
- Tree from bottom to top: O(log n)
|
|
- Used in: cases D, E
|
|
|
|
*/
|
|
|
|
// AddBatchOpt is the WIP implementation of the AddBatch method in a more
|
|
// optimized approach.
|
|
func (t *Tree) AddBatchOpt(keys, values [][]byte) ([]int, error) {
|
|
t.updateAccessTime()
|
|
t.Lock()
|
|
defer t.Unlock()
|
|
|
|
// TODO if len(keys) is not a power of 2, add padding of empty
|
|
// keys&values. Maybe when len(keyvalues) is not a power of 2, cut at
|
|
// the biggest power of 2 under the len(keys), add those 2**n key-values
|
|
// using the AddBatch approach, and then add the remaining key-values
|
|
// using tree.Add.
|
|
|
|
kvs, err := t.keysValuesToKvs(keys, values)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
t.tx, err = t.db.NewTx()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// if nLeafs==0 (root==0): CASE A
|
|
e := make([]byte, t.hashFunction.Len())
|
|
if bytes.Equal(t.root, e) {
|
|
// CASE A
|
|
// sort keys & values by path
|
|
sortKvs(kvs)
|
|
return t.buildTreeBottomUp(kvs)
|
|
}
|
|
|
|
return nil, fmt.Errorf("UNIMPLEMENTED")
|
|
}
|
|
|
|
type kv struct {
|
|
pos int // original position in the array
|
|
keyPath []byte
|
|
k []byte
|
|
v []byte
|
|
}
|
|
|
|
// compareBytes compares byte slices where the bytes are compared from left to
|
|
// right and each byte is compared by bit from right to left
|
|
func compareBytes(a, b []byte) bool {
|
|
// WIP
|
|
for i := 0; i < len(a); i++ {
|
|
for j := 0; j < 8; j++ {
|
|
aBit := a[i] & (1 << j)
|
|
bBit := b[i] & (1 << j)
|
|
if aBit > bBit {
|
|
return false
|
|
} else if aBit < bBit {
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// sortKvs sorts the kv by path
|
|
func sortKvs(kvs []kv) {
|
|
sort.Slice(kvs, func(i, j int) bool {
|
|
return compareBytes(kvs[i].keyPath, kvs[j].keyPath)
|
|
})
|
|
}
|
|
|
|
func (t *Tree) keysValuesToKvs(ks, vs [][]byte) ([]kv, error) {
|
|
if len(ks) != len(vs) {
|
|
return nil, fmt.Errorf("len(keys)!=len(values) (%d!=%d)",
|
|
len(ks), len(vs))
|
|
}
|
|
kvs := make([]kv, len(ks))
|
|
for i := 0; i < len(ks); i++ {
|
|
keyPath := make([]byte, t.hashFunction.Len())
|
|
copy(keyPath[:], ks[i])
|
|
kvs[i].pos = i
|
|
kvs[i].keyPath = ks[i]
|
|
kvs[i].k = ks[i]
|
|
kvs[i].v = vs[i]
|
|
}
|
|
|
|
return kvs, nil
|
|
}
|
|
|
|
// keys & values must be sorted by path, and must be length multiple of 2
|
|
// TODO return index of failed keyvaules
|
|
func (t *Tree) buildTreeBottomUp(kvs []kv) ([]int, error) {
|
|
// build the leafs
|
|
leafKeys := make([][]byte, len(kvs))
|
|
for i := 0; i < len(kvs); i++ {
|
|
// TODO handle the case where Key&Value == 0
|
|
leafKey, leafValue, err := newLeafValue(t.hashFunction, kvs[i].k, kvs[i].v)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// store leafKey & leafValue to db
|
|
if err := t.tx.Put(leafKey, leafValue); err != nil {
|
|
return nil, err
|
|
}
|
|
leafKeys[i] = leafKey
|
|
}
|
|
r, err := t.upFromKeys(leafKeys)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
t.root = r
|
|
return nil, nil
|
|
}
|
|
|
|
func (t *Tree) upFromKeys(ks [][]byte) ([]byte, error) {
|
|
if len(ks) == 1 {
|
|
return ks[0], nil
|
|
}
|
|
|
|
var rKs [][]byte
|
|
for i := 0; i < len(ks); i += 2 {
|
|
// TODO handle the case where Key&Value == 0
|
|
k, v, err := newIntermediate(t.hashFunction, ks[i], ks[i+1])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// store k-v to db
|
|
if err = t.tx.Put(k, v); err != nil {
|
|
return nil, err
|
|
}
|
|
rKs = append(rKs, k)
|
|
}
|
|
return t.upFromKeys(rKs)
|
|
}
|