|
|
# look for isogenous curves having j-invariant not in {0, 1728} # Caution: this can take a while! def find_iso(E): for p_test in primes(30): print("trying isogenies of degree %d"%p_test) isos = [] for i in E.isogenies_prime_degree(p_test): print("checking j-invariant of isogeny ", i) jinv = i.codomain().j_invariant() print("j-invariant is ", jinv) if jinv not in (0, 1728): isos.append(i) if len(isos) > 0: for cur_isos in isos: print("found isogeny ", cur_isos) #print("found isogeny ", isos[0]) return isos[0].dual()
return None
def bls12_381_isos(): # BLS12-381 parameters z = -0xd201000000010000 h = (z - 1) ** 2 // 3 q = z ** 4 - z ** 2 + 1 p = z + h * q assert is_prime(p) assert is_prime(q)
# E1 F = GF(p) Ell = EllipticCurve(F, [0, 4]) assert Ell.order() == h * q # E2 F2.<X> = GF(p^2, modulus=[1,0,1]) Ell2 = EllipticCurve(F2, [0, 4 * (1 + X)]) assert Ell2.order() % q == 0
iso_G1 = find_iso(Ell) # an isogeny from E’ to E, Ell_prime = iso_G1.domain() # where this is E’ assert iso_G1(Ell_prime.random_point()).curve() == Ell iso_G2 = find_iso(Ell2) # an isogeny from E2’ to E2, Ell2_prime = iso_G2.domain() # where this is E2’ assert iso_G2(Ell2_prime.random_point()).curve() == Ell2
return (iso_G1, iso_G2)
def bls12_377_isos(): p = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001 # BLS12-377 parameters q = 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed00000010a11800000000001 z = 0x8508c00000000001 #z = -0xd201000000010000 h = (z - 1) ** 2 // 3 q1 = z ** 4 - z ** 2 + 1 p1 = z + h * q assert(q1 == q) assert(p1 == p) assert is_prime(p) assert is_prime(q)
# E1 F = GF(p) Ell = EllipticCurve(F, [0, 1]) assert Ell.order() == h * q # E2 quad_non_res = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508bffffffffffc F.<X> = GF(p)[] F2.<X2> = GF(p^2, modulus=X^2 - quad_non_res) #F2.<X> = GF(p^2, modulus=[1,0,quad_non_res]) B = 155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906 * X2 Ell2 = EllipticCurve(F2, [0, B]) assert Ell2.order() % q == 0
F.<X> = GF(p)[] F6.<X6> = GF(p^6, modulus=X^6 - quad_non_res) B = 155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906 * X6^3 Ell2_6 = EllipticCurve(F6, [0, B]) Ell2_6.order() % q
G1_X = 0x008848defe740a67c8fc6225bf87ff5485951e2caa9d41bb188282c8bd37cb5cd5481512ffcd394eeab9b16eb21be9ef G1_Y = 0x01914a69c5102eff1f674f5d30afeec4bd7fb348ca3e52d96d182ad44fb82305c2fe3d3634a9591afd82de55559c8ea6 #make sure the generator is on the curve X_cx0 = 0x018480be71c785fec89630a2a3841d01c565f071203e50317ea501f557db6b9b71889f52bb53540274e3e48f7c005196 X_cx1 = 0x00ea6040e700403170dc5a51b1b140d5532777ee6651cecbe7223ece0799c9de5cf89984bff76fe6b26bfefa6ea16afe Y_cy0 = 0x00690d665d446f7bd960736bcbb2efb4de03ed7274b49a58e458c282f832d204f2cf88886d8c7c2ef094094409fd4ddf Y_cy1 = 0x00f8169fd28355189e549da3151a70aa61ef11ac3d591bf12463b01acee304c24279b83f5e52270bd9a1cdd185eb8f93
iso_G1 = find_iso(Ell) # an isogeny from E’ to E, Ell_prime = iso_G1.domain() # where this is E’ assert iso_G1(Ell_prime.random_point()).curve() == Ell generate_WBParams_Fq(iso_G1)
# just making sure if there is any isogeny that is defined over F2 up to degree 30 print("searching for isogeny of Ell2 on F2 up to degree 30") iso_G2 = find_iso(Ell2) generate_WBParams_Fq2(iso_G2)
print("searching for isogeny of Ell2 on F6 up to degree 30") iso_G2_F6 = find_iso(Ell2_6) #iso_G2=iso_G2_F6 # an isogeny from E2’ to E2, Ell2_prime = iso_G2.domain() # where this is E2’ assert iso_G2_F6(Ell2_prime.random_point()).curve() == Ell2_6 return (iso_G1, iso_G2)
def trace_endo(P, p2): ParentCurve = P.curve() return P + ParentCurve((P[0]^p2, P[1]^p2)) + ParentCurve((P[0]^(p2^2), P[1]^(p2^2))) def bls12_377_hash_to_G2(e2_p6S_iso, data): p = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001 # BLS12-377 parameters Fp = GF(p) # E2 quad_non_res = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508bffffffffffc F.<X> = GF(p)[] F2.<X2> = GF(p^2, modulus=X^2 - quad_non_res) #F2.<X> = GF(p^2, modulus=[1,0,quad_non_res]) B = 155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906 * X2 Ell2 = EllipticCurve(F2, [0, B])
F.<X> = GF(p)[] F6.<X6> = GF(p^6, modulus=X^6 - quad_non_res) B = 155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906 * X6^3 Ell2_6 = EllipticCurve(F6, [0, B])
Fpelm = Fp(hash(data)) Ep2 = e2_p6S_iso.domain() a = Ep2.hyperelliptic_polynomials()[0][1] b = Ep2.hyperelliptic_polynomials()[0][0] X_0 = - (b/a) * ( 1 + 1/(xsi^2*Fpelm^4 + xsi*Fpelm^2))
if Ep2.is_x_coord(X_0): P_p = Ep2.lift_x(X_0) else: P_p = Ep2.lift_x(xsi*Fpelm^2*X_0)
P_F_6 = e2_p6S_iso(P_p)
P = trace_endo(P_F_6, p^2)
x_p = P[0].polynomial().coefficients()[1]*X2 + P[0].polynomial().coefficients()[0] y_p = P[1].polynomial().coefficients()[1]*X2 + P[1].polynomial().coefficients()[0] P_down = Ell2((x_p,y_p))
return P_down # BLS12-377 curve is fully defined by the following set of parameters (coefficient A=0 for all BLS12 curves):
# Base field modulus = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001 # B coefficient = 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 # Main subgroup order = 0x12ab655e9a2ca55660b44d1e5c37b00159aa76fed00000010a11800000000001 # Extension tower: # Fp2 construction: # Fp quadratic non-residue = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508bffffffffffc # Fp6/Fp12 construction: # Fp2 cubic non-residue c0 = 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 # Fp2 cubic non-residue c1 = 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 # Twist parameters: # Twist type: D # B coefficient for twist c0 = 0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 # B coefficient for twist c1 = 0x010222f6db0fd6f343bd03737460c589dc7b4f91cd5fd889129207b63c6bf8000dd39e5c1ccccccd1c9ed9999999999a # Generators: # G1: # X = 0x008848defe740a67c8fc6225bf87ff5485951e2caa9d41bb188282c8bd37cb5cd5481512ffcd394eeab9b16eb21be9ef # Y = 0x01914a69c5102eff1f674f5d30afeec4bd7fb348ca3e52d96d182ad44fb82305c2fe3d3634a9591afd82de55559c8ea6 # G2: # X cx0 = 0x018480be71c785fec89630a2a3841d01c565f071203e50317ea501f557db6b9b71889f52bb53540274e3e48f7c005196 # X cx1 = 0x00ea6040e700403170dc5a51b1b140d5532777ee6651cecbe7223ece0799c9de5cf89984bff76fe6b26bfefa6ea16afe # Y cy0 = 0x00690d665d446f7bd960736bcbb2efb4de03ed7274b49a58e458c282f832d204f2cf88886d8c7c2ef094094409fd4ddf # Y cy1 = 0x00f8169fd28355189e549da3151a70aa61ef11ac3d591bf12463b01acee304c24279b83f5e52270bd9a1cdd185eb8f93 # Pairing parameters: # |x| (miller loop scalar) = 0x8508c00000000001 # x is negative = false
# Curve information:
# Base field: q = 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177 # Scalar field: r = 8444461749428370424248824938781546531375899335154063827935233455917409239041 # valuation(q - 1, 2) = 46 # valuation(r - 1, 2) = 47 # G1 curve equation: y^2 = x^3 + 1 # G2 curve equation: y^2 = x^3 + B, where # B = Fq2(0, 155198655607781456406391640216936120121836107652948796323930557600032281009004493664981332883744016074664192874906)
# e26_order = Ell2_6.order() # for i in primes(30): # if e26_order % i == 0: # print("order is divisable by ", i)
def find_non_square(): quad_non_res = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508bffffffffffc F.<X> = GF(p)[] F6.<X6> = GF(p^6, modulus=X^6 - quad_non_res)
xsi = 0 R.<X> = F6[] for i in F6: j = F6.random_element() if not j.is_square(): xsi = j break
return xsi
def find_non_square_low_abs(base_field): for i in base_field: if not i.is_square(): print(i, "is a nonsquare") return i elif not (-i).is_square(): print(-i, "is a nonsquare") return -i
def find_non_square_low_abs_in_F2(extended_field): """
Note that everything in Fp is an square in Fp^2 suppose a in F_p^2 and b in F_p are primitive elements in their respective field. a and b have multiplicative order (p-1)(p+1) and (p-1) suppose b = a^c so b^(p-1) = a^(c)(p-1) = 1 so d(p+1)(p-1) = (c)(p-1) so (p+1)|c => 2|c so then (a^c/2)^2 = b so b has square.
also all degree 2 extensions of Fp are isomorphic. so if you add square root of an element you can find it in the original Fp """
base_field = extended_field.base() for i in base_field: for j in base_field: for k in [(1,1),(-1,1),(1,-1),(-1,-1)]: candidate = extended_field([i*k[0],j*k[1]]) if not candidate.is_square(): print(candidate, "is a nonsquare") return candidate
def generate_WBParams_Fq(Fq_isogeny): print("\nconst PHI_X_NOM: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g1_coeff_arrays_to_arkworks(Fq_isogeny.rational_maps()[0].numerator()))
print("\nconst PHI_X_DEN: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g1_coeff_arrays_to_arkworks(Fq_isogeny.rational_maps()[0].denominator()))
print("\nconst PHI_Y_NOM: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g1_coeff_arrays_to_arkworks(phi2_num(Fq_isogeny)))
print("\nconst PHI_Y_DEN: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g1_coeff_arrays_to_arkworks(Fq_isogeny.rational_maps()[1].denominator()))
def convert_g1_coeff_arrays_to_arkworks(iso_poly): """
convert an array of coefficients in Fp2 to arkwork format """
arkwork_array = '[\n' for cur_deg in range(0, iso_poly.degree() + 1): coeff_selector = [cur_deg] coeff_selector.extend([0]*(len(parent(iso_poly).gens())-1)) arkwork_array += 'field_new!(Fq, \"' + str(iso_poly.coefficient(coeff_selector)) + '\"), \n'
arkwork_array = arkwork_array[: -2] + '\n];' return arkwork_array
def phi2_num(Fq2_isogeny): return (Fq2_isogeny.rational_maps()[1].numerator()/Fq2_isogeny.rational_maps()[1].numerator().variables()[1]).numerator()
def generate_WBParams_Fq2(Fq2_isogeny): print("\nconst PHI_X_NOM: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g2_coeff_arrays_to_arkworks(Fq2_isogeny.rational_maps()[0].numerator()))
print("\nconst PHI_X_DEN: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g2_coeff_arrays_to_arkworks(Fq2_isogeny.rational_maps()[0].denominator()))
print("\nconst PHI_Y_NOM: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g2_coeff_arrays_to_arkworks(phi2_num(Fq2_isogeny)))
print("\nconst PHI_Y_DEN: &'static [<Self::IsogenousCurve as ModelParameters>::BaseField] = &"+convert_g2_coeff_arrays_to_arkworks(Fq2_isogeny.rational_maps()[1].denominator()))
def convert_g2_coeff_arrays_to_arkworks(iso_poly): """
convert an array of coefficients in Fp2 to arkwork format """
arkwork_array = '[\n' for cur_deg in range(0, iso_poly.degree() + 1): elm_poly = iso_poly.coefficient([cur_deg]) assert(elm_poly.is_constant()) elm_poly = elm_poly.constant_coefficient().polynomial() x_gen = parent(elm_poly).gen() arkwork_array += 'field_new!(Fq2, \nfield_new!(Fq, \"' + str(elm_poly.monomial_coefficient(x_gen^0)) + '\"), \nfield_new!(Fq, \"' + str(elm_poly.monomial_coefficient(x_gen^1)) + '\")), \n'
arkwork_array = arkwork_array[: -2] + '\n];' return arkwork_array
#xsi = find_non_square() p = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508c00000000001 quad_non_res = 0x01ae3a4617c510eac63b05c06ca1493b1a22d9f300f5138f1ef3622fba094800170b5d44300000008508bffffffffffc F.<X> = GF(p)[] F6.<X6> = GF(p^6, modulus=X^6 - quad_non_res) xsi = 219316876564715501445845678793720069854490678622108189766720284953606550746049804013989455416277727490975087855145*X6^5 + 189466179801738810887203415755624953151244475240588395433085007196132075694018697411282623497091853518199320679360*X6^4 + 108520825812509855860919714742321990242401369063484109910639742940603686352843166577300516208027451357460988981712*X6^3 + 34112775793303707113282524593132637468394825594735587392051797399858875786055772232469914619100641475357422803395*X6^2 + 24571511079604071320024029432159749780558012896103101565537728634741822079830191849836550641682167566004999041634*X6 + 159529377420408936856843219892213059773340895657856533814435812939320020966386099270143668590340681432634121813716
g1_iso, g2_iso = bls12_377_isos() message = "'I refuse to prove that I exist,' says God, 'for proof denies faith, and without faith I am nothing.'" print(bls12_377_hash_to_G2(g2_iso, message)) print(bls12_377_hash_to_G2(g2_iso, message)) message = "'if you stick a Babel fish in your ear you can instantly understand anything said to you in any form of language." print(bls12_377_hash_to_G2(g2_iso, message)) print(bls12_377_hash_to_G2(g2_iso, message))
phi_x_nom = [F2(257686488674545770403807165703608491821700153538449954828958424244540050698630649531963334687249831352703307010320), 111424637101855455933266154646364284011426845669269128135151076357862608862363255550023430066507374024948118755170*X2 + 42757221749971324771094873984161893488770713619971906650868412147150411626107692517374735631529074208182971223761, 225121846650282460844501132545123914298308844633699320249517374760159461135641190512758348530493533776082794775238*X2 + 182397511129719455005407008314265069548677727690813781407770284951663734172103638427690475141072553074575221965383, 207900273391847649346738694548609379565855077833395139615718913929125517933139374225345876078131155102796477330196*X2 + 57815299880375466472857931022912171296473275308202666945592250229771936329503691945881925004852905385160277065937, 126932856673577834557989832150639712812952235385146245135235966945536973066700604316981524138335070494135486842267*X2 + 137461512605659170682300574841422927080299499340556631216517745531687218204749421916211266297116812992348911035943, 239220883081126775212690475926873251881459118214247205003758844846022330659109168499739536107988232402392010148915*X2 + 46999088780962505530452862218145506822520603893157196954987630663398814970386085186714696215299498862118704356116, 134745690770497208213126494241047670387239583870118646766457825646403640347226342104549240830903829682059982326727*X2 + 139197805910452438551419010260519164074855817417063470117576949912038778696248952069759607969690314639425179841530, 13030331252003455924520111292282390143014750833628314421882396445822808054003584720817672388894671968339344750750*X2 + 205538184807792915395400814312734290381492118179294333381188081024280220461983210331268164749465891791515156713363, 140302880976816076816721836344737338071783799730513599397010923016385668972882234545823525686327074617973208860421*X2 + 142477190388553987083175296028785369398580520754966744245694134692905987471896623788336582063245356609279657681007, 139097554917981907719834170888130444861465074977932740823078016609751284491153969166862091045221603146530147099779*X2 + 224387508661509885922784938707800296916307265709615639996851552571542396031861010679067114387017955365668256976459, 168051662766288660516992486993594951443897767271245608184500932350745292043277998040372769419920145370014740823389*X2 + 205121513164720886728676669276499362266139599046368626660027529707299170205603076104821498121463983514654737906998, 75932324143801627944771670190157701465835368459121478812142087933983158148741884038298732552979549182443318608554*X2 + 121805396188033590038927712795579559087103093135515082191363074395734682090746320669474388875423586929711608364404, 71494892585734577638768956295356005795556178117525317604450863442514001295461407965931789120761632296953990284809*X2 + 129405180560592211762572081137246817341681076084973348177153469170177032429929182033872985192027066614650754524309, 7531651998638745138624528632013700806848273210661661935097722938692087106885113623803921367479582718152259987647*X2 + 33702103741469458207888758659069786556456463428431771947788685622778743201883736580054112022350187936628758294279, 233542978062801907184831603532041452683131033894029390005010898310417350737942550513935694209129350870817277172583*X2 + 188864327416940344326229259749844123042825201085435432627935318423081174922012610651352346391417830722940140585036, 55517007457989983858891530398020104232682844055600438506715652841000901588962918721851719951820185832313468320365*X2 + 18662780664429933771192510151421557554668611953190652639195940454142648933454488952361465779870877163142807899993, 97587419381711441517698658129839468394457401157021696651597713140291602428957555768352336399994179660880524139808*X2 + 96957224446676123824350918241672464825735454895610578698586352322390662445273628285471423071856275085141118045105, 141639542381992520856560441410242716791591163086143661904501184306161835850893036003163803884002896297253767009574*X2 + 231615170079008089001496386178968115998492752668752266579314749799030868007672086089822600816657899022828734321418, 116602947282570158568911982642223012726308726836613908383578383334370050655181609483409110122767402070015216413338*X2 + 161628978970526519329329822295337582413127505041035400390544637404697415598883543152357105789965717470570494458589, 134026238756820071135251263743482298414233385640297868129438877114735051445009051866011097877494554014116371908672*X2 + 231856156439094824000656216233999389240375109059054378946071472571709648546048606758615235778059505184730503731408, 124795068789978952575783920730487695370136831800946532752608526840944057283524691812795315973894625798220920082767*X2 + 240831597672798022181780196442988629902557797416422752447288392631352072879531084668083129009311685341499602842359, 26460985441766134300772651139298255538590921173641559533448371120006177647448359485069994828122162245692248966113*X2 + 88440326308038176392218244342168484162310820452393341528824316035047758188693394849605113877264996124652991932266, 133330677606878026253733532636681674371349711466687180056118155523679405609126901243884039337337134962627419965345*X2 + 49078863819486020728803126419770411403544927967564775122533948145670810135602221046611632159195633125363688522753, 172182978063994664796636281648715261218877265445686511820228400278128135165425091257965367402286789184662480399420*X2 + 165752316658948679552567650341600213993620343632797226373648182250196112194084163699689918190990441453209217107673]
phi_x_den = [0, 1, 226808321937551848279625259185874129283473963677740840941191767963773773116795416044456897499248110949601850478751*X2 + 114765242606519624982400506165904237893471895287563151339459173837887003905317760268941880935997925302483810508170, 38216467720351249271557670250657907497353617320059247139049052120842234439257669911851800147147313339669901995490*X2 + 69204740140688189359361744597982172008615446130082862488352885921056331761951244674105352971861180999345144984246, 122245180850560437899129167839042992977076962956306963014567407897293197200681367630073717776421484831646532593850*X2 + 88800087516399959501800534486349824688877578947555023348699585957763763180753947498274724426567091309571649023166, 40524381030862708561992431051313657250449208728762250622105264621614810013551839533882876237430311293361821844681*X2 + 219867891253233227579149075701158020315633373195728794672342716359369374905471205886891783929214978430681990036959, 258564647705165711537697112631909171171984598885182416737094411313452565619624851452883996847677936536536427515609*X2 + 61539107135026562717413992304341045078777699607129438878970720148394005607774781361280841945254066290447512808860, 159070381032762485827712709726121404273458384870681735035622289092845201234785949112608113110663482448286550123895*X2 + 82401683815523491481199527201592079745651015539510634295850130611233688561451492330603949648060220533354045095181, 48223421552324743764826987807666420223567068651197810526658625431719723647078135623842652870214605734395702563953*X2 + 228687493726193558146661770435566220015197012398911029567178581932152080915557441338298274247922585720118620741642, 218641591773893348322227471378547165043111820723080862748702228639502320411481947789769811366015509814793754417785*X2 + 135098057022357227608956235549944366234286127511416070373827898662879730495316177891045223676768538262860577751087, 47600282095791674213992406796226738606147801920837771594412659335039656256887529097801732359033209329929517773020*X2 + 137972103666241533333852948884443545062916813938500094392929132716673981519930321922556812217620174550912349461419, 172261303485740204844677209985093962119870302741179905216184157502752680126595180139007438892219460422745105017475*X2 + 155939253194251956164424003889230633804182501306742152137449150503013281009623802843490858570697615902305132709111, 196336324454181158449524835117699225596467237400207491815838252818724619960701247377784788803043096102210425517795*X2 + 146699001487357489560227247646638441970227213145065178169054120124066032784405371946823057532199624317631250110158, 247894577734607804564008327202067464850944943412136922154651844411293409127507835027401641672218158657943826643185*X2 + 219195224293908756855578672234544437367397890301565855376597788842679778002659222115121213889017072727428356719234, 39000405073743042346296304484168728185850505353133307908773204457381817815206498660334035187329579833299098854925*X2 + 220384543328043309613139993483671702409123249316603413540407457441864555087013622511692877380446192851630287225413, 73874168720549156282270730246833500558176745413797996774310087510749148634278604002052708223696920208907646881989*X2 + 200535851812830711305923885193456283997079838967145939474743725430895019937175928830731575175640901984178880783011, 1943403947563275150997369785095274118967148389261968103605246462390957897712088493386683316483490223770940902453*X2 + 142027935684179419855710336591935481541662612521926997142809731189880364304749483394981554800161483370077741056896, 10757428905957703588038877674336794621171834192483169256644941002565404396356505770991807551250572677872221995215*X2 + 33059404918884325948584592996172619413923041143099424466021368531149134447772287601175965141235934645074697267050, 99720174640078175171062115168656883367851695095484071724968247253018133737453004325770034298778522431209097310502*X2 + 168096269708683796856556357930292925811554548435612382636199127159818409693729567946366892866365435246772528367031, 95980723944521770226526824868742386994509079773043937452565624851192578861364669763702851513923262074687274763858*X2 + 11697862001088266121450094179739500241088837734277696824118211258364151630931186792937914301859707394679202145393, 214943806307523271117409515396321303330984956986022871981067208079182219051826091487389512723678609613943324945884*X2 + 247957910140234524214324761874381439955705875777136703199106095643204254634304448830280410483013931961038942096519, 154931903368935230733381648548242132592387960818255334523314635613616976204585469590179605887364646535250639335453*X2 + 133779461364688439286044255858523747234865723284672664672066362220940987786797573428234566651244275384657571315397, 38999017135204040984255776995893429123212353273299706702441986090800506456890730978953545316903022073202240280957*X2 + 73314120416427646620569455169905724114883313094893949291513517502168861559767103394033744003864213510722887906274, 106967816747202586221026040614608875779671819314280336591550617355334247302203894951925800601923998790402234025494*X2 + 196537929755540830130458921156910352741196129560556501635658595085779576490417628044619830744899117989899096675116]
phi_y_nom = [191144230647045707590184821948778479495825928592047153194222027257046414968351470170933284561757547536684715232224, 187207294428708203829145346569036650547801585764458185253951079008883539428999915118458145884040644479498579194069*X2 + 8411654157888762354868203383638678565276209861191964793314989111047210939710084789719415109438273538021505111510, 38886256490758184304393553179653915986060051480245869194662478974097783410818598716423697164666847852998235320966*X2 + 133980604703672698089766182661998480874540278232523164821108522954758888202993741126021280431373622479768313949356, 221484407095875062109245088271905042727631591858266177514520864715688286361376419124935364810076972840743950061836*X2 + 165653628641840315664303139225783620502451401675361521932235743336920154286645843675719999005591028855021909439672, 138246251209835932037747211155451146889753321830881007441732932302281412878493276648902633332871835811473542877960*X2 + 187289608720372854303118076618428364941868395899689208696722069999084187290922488892094161492110977423619035272649, 92602205576740019970555092291786069878442230185393269119060098961688837594116147683652993589116622567477525635445*X2 + 149340524242957423974772893433814190392014381473852786295383636551096665463613496468840974015807625484823068784839, 14821532235517245029225575994881495294340097494060025842437989195232333244802578196149414170959605497405878582540*X2 + 216436913923048926393371382639334167145590308917722616640273699755872914758105310937706004925121569777096571773501, 214497132288922282410470995366492104127705853917251639956391350188219443322307620708083843529019036699996096662829*X2 + 107794270350250727824303719264349327362253764840855494366195678657690526275364378542854833701549538802096418248084, 219490420378012040044597900078465204875085141304274262719756064241884227366143829466191943246131284770521917871841*X2 + 209865017468509971341642462085093919192185569139223034709204939485243056860760867821924437786503336074163109167043, 214026235442364760645768878901893433888530027239186932434340221483611429797860448445573321733516533800376783586849*X2 + 133226465537371725791207823007732608016851433266603356824246032571600774858733596680855277271698121233692296984412, 225199447663521472758596124691205483139271667363437613911741821442536429098852529066869544898685674003162780468715*X2 + 89345438915485267000169594163110872264018138861479961667441187849751112704236404111089533981719810422892295971197, 93302878136439028547402102681387844515310157832968167882878653011659204369510932686206718073261314562836132094987*X2 + 25945524144868616798377005434321968607597029473408456417628770501736226577600936996306306386148517051252174176056, 76313913933214383311039506294052736258824720597935452573279680967713148986901401959316819572744945391130691484709*X2 + 128014602802339573117431114877417430852771121268703430430938496966993823548956133449208721198231566864014207876438, 236947842470057836630333692287445445381482585314120394670322793497639860754696181540315462907276465780536189751938*X2 + 190392008574458975806418600277835706985376229847531539152452591238358119216217627352637258288556199770365835067627, 120208242722200714489749801697072499732825359039071841003310452443348308205795253556381720202955786470886397257982*X2 + 24894203921911934571199160858232802417038583022586807490232139245280305064770051397858560092019807972764914216208, 153830492090479629579603390014414329445124716355506854714467139884353350218676155251380590350715220577136073627555*X2 + 134073844001083825421215848942909782702386338984309026786345170296027964134133613977422644522116018820345983847098, 9418692556935347898382092734571186686450013671235254851703843297990915553970523788207837029694342875454233715193*X2 + 8193038016485856982946817225511231096542148907426451941320763511467909442967073658628847889502238964737537651732, 38290302770763423573829549940707041833171456153861823771988991461936307395626028842226881832323571911777783325552*X2 + 187038260664272653235271156369560372695631446985830424056061915935191103410794701043280599214000281588074544657045, 41800154023275681622180037448850007404785328883356603798952195956734186941687720006035939799906615555216990599152*X2 + 232464396645736057215489125286424902556417590819993013568149210848680788030572385843387291711255018198764185991688, 67221897212365550931740188657735915316732820967428518278153545138481072202717711417949297443415145931349647354864*X2 + 1902545032251691771730077590223241149624964994150687591044314892275508885163105731414463515832696686914784357054, 61944739699039529393579599024212698483276675572994284564132452254474389809816373777333943401872462638231436446348*X2 + 43364741387169348753014627410136368149262698966106150910900756728904165177527487078077667350512959263803465594111, 48778316120483961415587198479185523835826749642473845435889717611018677968038563827240090688089889339896065735651*X2 + 202678826482051686554967485240375873611017127444692775767942717540980994219310434688309713205309853725035377739266, 41448968894064940344019909320065089603789758666259308674991068396259424208998703895462327945020441899649105710894*X2 + 216229669548325266866202681779047392389311278655704899819569794547799955366773265486059541504823551138048188296915, 3933321808920817665892338621688661599151270488240879901971434149901647580182088988848276352998263499828820719486*X2 + 203453160391122297114764634999687500867096029894782931052056493086745424054313508850135956093450854351511962568248, 123487321384490387195094801639396482206262484603737596281845841408384878196277195829349272799617445074531384638014*X2 + 199891426461397900698689228549412057991574595606781836622700872746783962617889812808189413859146835266670353365164, 188439202506521797668192307957766105517906171778775206324453830870041256388075168650527562921934698697140423464142*X2 + 115853993705912938985758922127173369175321347209545356726288637524744651943071927137158115778405271676616612170666, 142202207982399429498494980946602932891398916434890751210930378360132151108127041093945093575972538591541631204396*X2 + 106675525854808944323662773997719159035717496275254424840883415090817949089664218352587480756720528552217297479523, 256411146327954053251262434650444473133439725697572806395735688747939610541453396276159230618136278790246160635595*X2 + 159262246805999098136860288248138175456624792734939305704793543040582454889431805248352849370505960249829264037333, 135097007131619291616144192105571840182910366835929043414300810591005223344182310684819863256436016908585466099814*X2 + 142632909729670553826438094523500302011158161959746397893981306350515911350319381478896794266740222044724793183031, 251345693404812657374633929641944735274020119374936409701199723189056283828393555325905238148261248120379910778583*X2 + 116623955280658732717402646061913268461869836841204913444259922610012147799771656282704605878638711580234302879520, 220909287290837789818195731110558629271153823543746871132117978761339034747123501189473420274677281822601971748563*X2 + 228308803559737454633222698485074629499383737811342884536963429506633258142551503400414163815852158951494613610809, 226047422399128874433860903177676209375847937545805175562415311468986239012130226120019081492247088609694678876810*X2 + 8414285408102090292522571401032945098403423241877066651551931468973120658567171350501434823318074450118610388181, 30408441237651674477115309504276625429344634933425091999725383701660094027885762738289460271315609173544614563248*X2 + 109149004424675517113489432756837393820953128532207867425106578478986226345054217066591849467433110788215195319750, 154445371651863854130996979206021232172872232688365227537444264835087932826365764405635125797374865965304745730822*X2 + 243169287995837894205750503657473181252400776697661357268613577074201794943537027717771587727860769419520957117060]
phi_y_den = [1, 210880269899843225414111521931364427157014189139153931141845520612300425501022712679200902179085486362182614989038*X2 + 172147863909779437473600759248856356840207842931344727009188760756830505857976640403412821403996887953725715762255, 97451989647642778641795555357790293895920858058713680518946629728091416392679362160653023502048556793761866531581*X2 + 234716866510887739589745422464313597883163631119309437461957606368046054279070563732715561665778636277317684644515, 6765896997590927451499527318422027932088882822980873934837948553969718709492787823596776070132570199077127482065*X2 + 212106075999882114389916784897163150756429321557076536924307653148222968665985018997130331497354557069316538670523, 183808890703436998546164599111050972902808423546263572335175957576564587842514119276068990911067829699066843757937*X2 + 79081485025787885179619178550309706744599846607596447880706626420512740963985633088538634502003788677250834958908, 183219245849642047090141657656072708461001592401873575143115550847958265143529306190408825011434780265059908079650*X2 + 4121090928751590306336774011079865996138664888804166805010515676212588791761189056383637824656513752764121888675, 157598266513011182093451150345114371606842593014102635902061162138398777778450012845089379844999350325670077782200*X2 + 212862020601301354783026588297306531610140885387724836359356800753780855161155144746080869191538655229274242914307, 132695208880203057798268960407754614753345990251279710979596670783892175104478291787481794529190706739877760089560*X2 + 42585898388361518080924198789209195881860509830112816215046001795045034138585747974649960102171072364466234418812, 6046324386958113626500748531301314307229746408846776295678625368971798823548167403538529285882066298168231669149*X2 + 64805743514968884017432304617184871899075979363892814607985017391426869625002757534871594116135107848421987411961, 148745905560783494991892238622790396213255789465409808038709750840775025617296316699696997331989504328034553213894*X2 + 101332532133743769759178027285109552486478973958553103055307446365529747250973790438239230671819476569086244438727, 53390417057360854696711134553867053334956120915983753729596602193155006833056717338565729257476036879055975910097*X2 + 30126025128311053094362231518416999154688680759401769180563223025361877725315179695978985780460875616652938854146, 75265817091612360444217709043194311507703596250641164601263089234422086318666070167810083868284770450890779266774*X2 + 194440756770673250653849096711805826346541581797630354589253365569405779009028682866443842541588052010949210024484, 246226868929550107779875102413192686259972538740042993595504829761267272514998892312681511407413880843390092913913*X2 + 252218794556637183364789705825049189219556217519670190016584589877973440046635828866291293002549365274213665103495, 228823832066259533984346839854456963456061412139464585495219844904598927917971403987214543635705786807302526573779*X2 + 242374981274128257174433646391488180576863913259197526647513270422870835725158808599624055920155693832356361192562, 246735083688655178976599901436968434779493759990448799231310864308891009496294971885106650388027197609829556319894*X2 + 248265339860070148327157063205450906034372346050742532250909040050681913704941472496789561564874787781299103889328, 33695298953151791677564491610276872092952551110021466172491397823758283921068636555353240048692541883780027233962*X2 + 141307886851791570111930048284226290849958071383456038631306928334570275405889250568493573543543795501685612269615, 206045464105062318563700338460670926332476051084269665075012377410704353049241671458557389593362582538704238377616*X2 + 124201488690791095020042847186337439989685011854729481246272047846908500431421470344897520044190299684207452017073, 167478505497067957490757520193067128323382872103395718848436244112857102765738573826312783708349214669979612036158*X2 + 136011650568921952309089811450436645471254909718073766303847394446918967077385999380499048535832357755732371368738, 53213606042373287683153647684084583002441527525177758051678463570615020765660540938870067881706148841340293404257*X2 + 57449149099548285338146473529383255206310079371370663992648410210841833627207062160011080280732475904935527767063, 119396884503349014053839666170414789560955868303656326650021743484252346209353246139311353657707899076368015332219*X2 + 40836628940164991036725499428168139451294386215534361893839871958837737306822281294361671587764896498700322394958, 204809230842263072415312635210643987712012160534293694062738501600937603588267937911969298058204043106501986725326*X2 + 108398849957050915959578499238335172000970311919637037913625633347326921657585237193100994767528244599176367431882, 55976309667093193926953058482403983650044130588205371047077237394269232758375928755579870418413040530924659710422*X2 + 18177910449767953614338723180992575758462819793657888834925741153507922227776503487306285172452430778418239589878, 224037954053161681052577381077631881138732983068288196649494577229506443999757164090758954620762136536790092765707*X2 + 94953611600133917480746113251669332369937157892937924494319507354263981756523698288726321437604686331762128114942, 78363344687446114757879143124020926645520829625790622079288990711202726499291972408305265373741655103522048633806*X2 + 255810123836950778051032251049468471118744836441263107437005316697409810175422976454215094737538073112171964000966, 171430383391121065822039978510482289343958135960126315509375831831735263180943544895493884988847947752888720502133*X2 + 251064692215092635541196206457923985861467397867989080397969990645886126152674833092283559946890888232618697517884, 131736273443849165304852712527070616520885505701320868662058330388440710419459541866884603770735894010610491333882*X2 + 250488593850017034090300371968459931740406675270099747930030660805939980644430804509506597720682995099971419762057, 42967590874964323361920860309631969474991176192252393149421408476343364383848642144439727879920981862569415477634*X2 + 53290030879673160724264978063216325707183784347799183367929912851157629196486013218134779085284663628473135140615, 224732340440722096332247540469311391766792864305974461767563394934556509366444399113606207665094042937608880394380*X2 + 32044478312863504453978511975839237915357713065285858656377527520925624222082496835678894223326750023304346513708, 82194329196840936158921467961561828669469444994699107543787160001285217807552090667641931153824104285439311091477*X2 + 42398151340378868438123040588425908782227436520374323184618125390984068793920538080412999034838310511981244418952, 114397460921328140828185121166450637136573513025702964340164304518654108540682577087979875141067314446917571826582*X2 + 107140053800026140817203074526089346919722280052456645787788712045148531978814339001150298053597504647766497707422, 75310151275642225944994533227518963961512910025529659163648069668626195571780520556481029340507362571133885889206*X2 + 214137118009637944275213937166601531498145257806838837034827533674793291112410824873653425491233537265355337125438, 36167189440196390196320129647971031300455228428629866775570898825049060037811108115927676106354625467897211624573*X2 + 83946178094995839681455048029661822915614318352963730526672352524233381944447759416757234629624830143848209247040, 19068358873460915055376626440913257473060029137260026174266944920186136734103362122730468957229595374427187617425*X2 + 255874157960252694683645508260848371559149621054025374393554376526882940742514793344046680765937904153005134511200, 234106598974619695004693596968258258794247055108931498762994964636371479098512727352039267846913406623802246782945*X2 + 177304823246185962354212404236288831041380791662214394697399928748373114098169675564032904690251242875327747673679]
|