|
|
modulus = 22369874298875696930346742206501054934775599465297184582183496627646774052458024540232479018147881220178054575403841904557897715222633333372134756426301062487682326574958588001132586331462553235407484089304633076250782629492557320825577
assert(modulus.is_prime())
Fp = GF(modulus)
generator = Fp(0); for i in range(0, 20): i = Fp(i); neg_i = Fp(-i) if not(i.is_primitive_root() or neg_i.is_primitive_root()): continue elif i.is_primitive_root(): assert(i.is_primitive_root()); print("Generator: %d" % i) generator = i break else: assert(neg_i.is_primitive_root()); print("Generator: %d" % neg_i) generator = neg_i break
two_adicity = valuation(modulus - 1, 2); trace = (modulus - 1) / 2**two_adicity; two_adic_root_of_unity = generator^trace print("2-adic Root of Unity: %d " % two_adic_root_of_unity)
|