28 lines
763 B

  1. modulus = 475922286169261325753349249653048451545124878552823515553267735739164647307408490559963137
  2. assert(modulus.is_prime())
  3. Fp = GF(modulus)
  4. generator = Fp(0);
  5. for i in range(0, 20):
  6. i = Fp(i);
  7. neg_i = Fp(-i)
  8. if not(i.is_primitive_root() or neg_i.is_primitive_root()):
  9. continue
  10. elif i.is_primitive_root():
  11. assert(i.is_primitive_root());
  12. print("Generator: %d" % i)
  13. generator = i
  14. break
  15. else:
  16. assert(neg_i.is_primitive_root());
  17. print("Generator: %d" % neg_i)
  18. generator = neg_i
  19. break
  20. two_adicity = valuation(modulus - 1, 2);
  21. trace = (modulus - 1) / 2**two_adicity;
  22. two_adic_root_of_unity = generator^trace
  23. print("2-adic Root of Unity: %d " % two_adic_root_of_unity)