|
|
modulus = 41898490967918953402344214791240637128170709919953949071783502921025352812571106773058893763790338921418070971888253786114353726529584385201591605722013126468931404347949840543007986327743462853720628051692141265303114721689601
assert(modulus.is_prime())
Fp = GF(modulus)
generator = Fp(0); for i in range(0, 20): i = Fp(i); neg_i = Fp(-i) if not(i.is_primitive_root() or neg_i.is_primitive_root()): continue elif i.is_primitive_root(): assert(i.is_primitive_root()); print("Generator: %d" % i) generator = i break else: assert(neg_i.is_primitive_root()); print("Generator: %d" % neg_i) generator = neg_i break
two_adicity = valuation(modulus - 1, 2); trace = (modulus - 1) / 2**two_adicity; two_adic_root_of_unity = generator^trace print("2-adic Root of Unity: %d " % two_adic_root_of_unity)
|