* impl bandersnatch * clean up * update changelog * Relocate the readme so they show up in the doc * Delete README.md * Relocate the changelog entry * rename & fmt Co-authored-by: Weikeng Chen <w.k@berkeley.edu>reduce-generics
@ -0,0 +1,34 @@ |
|||
[package] |
|||
name = "ark-ed-on-bls12-381-bandersnatch" |
|||
version = "0.1.0" |
|||
authors = [ "zhenfei zhang", "arkworks contributors" ] |
|||
description = "Bandersnatch: a curve defined over the scalar field of the BLS12-381 curve" |
|||
repository = "https://github.com/zhenfeizhang/bandersnatch-rust" |
|||
keywords = ["cryptography", "finite-fields", "elliptic-curves" ] |
|||
categories = ["cryptography"] |
|||
include = ["Cargo.toml", "src", "README.md", "LICENSE-APACHE", "LICENSE-MIT"] |
|||
license = "MIT/Apache-2.0" |
|||
edition = "2018" |
|||
|
|||
[dependencies] |
|||
ark-ff = { version = "^0.3.0", default-features = false } |
|||
ark-ec = { version = "^0.3.0", default-features = false } |
|||
ark-std = { version = "^0.3.0", default-features = false } |
|||
ark-r1cs-std = { version = "^0.3.0", default-features = false, optional = true } |
|||
ark-bls12-381 = { version = "^0.3.0", default-features = false, features = [ "scalar_field" ] } |
|||
|
|||
[dev-dependencies] |
|||
ark-relations = { version = "^0.3.0", default-features = false } |
|||
ark-serialize = { version = "^0.3.0", default-features = false } |
|||
ark-algebra-test-templates = { version = "^0.3.0", default-features = false } |
|||
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false } |
|||
|
|||
[features] |
|||
default = [] |
|||
std = [ |
|||
"ark-std/std", |
|||
"ark-ff/std", |
|||
"ark-ec/std", |
|||
"ark-bls12-381/std" |
|||
] |
|||
r1cs = ["ark-r1cs-std"] |
@ -0,0 +1,12 @@ |
|||
use crate::*;
|
|||
use ark_r1cs_std::groups::curves::twisted_edwards::AffineVar;
|
|||
|
|||
use crate::constraints::FqVar;
|
|||
|
|||
/// A variable that is the R1CS equivalent of `crate::EdwardsAffine`.
|
|||
pub type EdwardsVar = AffineVar<EdwardsParameters, FqVar>;
|
|||
|
|||
#[test]
|
|||
fn test() {
|
|||
ark_curve_constraint_tests::curves::te_test::<_, EdwardsVar>().unwrap();
|
|||
}
|
@ -0,0 +1,9 @@ |
|||
use ark_r1cs_std::fields::fp::FpVar;
|
|||
|
|||
/// A variable that is the R1CS equivalent of `crate::Fq`.
|
|||
pub type FqVar = FpVar<crate::Fq>;
|
|||
|
|||
#[test]
|
|||
fn test() {
|
|||
ark_curve_constraint_tests::fields::field_test::<_, _, FqVar>().unwrap();
|
|||
}
|
@ -0,0 +1,107 @@ |
|||
//! This module implements the R1CS equivalent of `ark_bandersnatch`.
|
|||
//!
|
|||
//! It implements field variables for `crate::Fq`,
|
|||
//! and group variables for `crate::GroupProjective`.
|
|||
//!
|
|||
//! The field underlying these constraints is `crate::Fq`.
|
|||
//!
|
|||
//! # Examples
|
|||
//!
|
|||
//! One can perform standard algebraic operations on `FqVar`:
|
|||
//!
|
|||
//! ```
|
|||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
//! use ark_std::UniformRand;
|
|||
//! use ark_relations::r1cs::*;
|
|||
//! use ark_r1cs_std::prelude::*;
|
|||
//! use ark_ed_on_bls12_381_bandersnatch::{*, constraints::*};
|
|||
//!
|
|||
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
|||
//! // This rng is just for test purposes; do not use it
|
|||
//! // in real applications.
|
|||
//! let mut rng = ark_std::test_rng();
|
|||
//!
|
|||
//! // Generate some random `Fq` elements.
|
|||
//! let a_native = Fq::rand(&mut rng);
|
|||
//! let b_native = Fq::rand(&mut rng);
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
|||
//! let a = FqVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
|
|||
//! let b = FqVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
|||
//! // constraints or variables.
|
|||
//! let a_const = FqVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
|||
//! let b_const = FqVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|||
//!
|
|||
//! let one = FqVar::one();
|
|||
//! let zero = FqVar::zero();
|
|||
//!
|
|||
//! // Sanity check one + one = two
|
|||
//! let two = &one + &one + &zero;
|
|||
//! two.enforce_equal(&one.double()?)?;
|
|||
//!
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//!
|
|||
//! // Check that the value of &a + &b is correct.
|
|||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
|||
//!
|
|||
//! // Check that the value of &a * &b is correct.
|
|||
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
|||
//!
|
|||
//! // Check that operations on variables and constants are equivalent.
|
|||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//! # Ok(())
|
|||
//! # }
|
|||
//! ```
|
|||
//!
|
|||
//! One can also perform standard algebraic operations on `EdwardsVar`:
|
|||
//!
|
|||
//! ```
|
|||
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
|||
//! # use ark_std::UniformRand;
|
|||
//! # use ark_relations::r1cs::*;
|
|||
//! # use ark_r1cs_std::prelude::*;
|
|||
//! # use ark_ed_on_bls12_381_bandersnatch::{*, constraints::*};
|
|||
//!
|
|||
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
|||
//! # let mut rng = ark_std::test_rng();
|
|||
//!
|
|||
//! // Generate some random `Edwards` elements.
|
|||
//! let a_native = EdwardsProjective::rand(&mut rng);
|
|||
//! let b_native = EdwardsProjective::rand(&mut rng);
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
|||
//! let a = EdwardsVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
|
|||
//! let b = EdwardsVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
|
|||
//!
|
|||
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
|||
//! // constraints or variables.
|
|||
//! let a_const = EdwardsVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
|||
//! let b_const = EdwardsVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
|||
//!
|
|||
//! // This returns the identity of `Edwards`.
|
|||
//! let zero = EdwardsVar::zero();
|
|||
//!
|
|||
//! // Sanity check one + one = two
|
|||
//! let two_a = &a + &a + &zero;
|
|||
//! two_a.enforce_equal(&a.double()?)?;
|
|||
//!
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//!
|
|||
//! // Check that the value of &a + &b is correct.
|
|||
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
|||
//!
|
|||
//! // Check that operations on variables and constants are equivalent.
|
|||
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
|||
//! assert!(cs.is_satisfied()?);
|
|||
//! # Ok(())
|
|||
//! # }
|
|||
//! ```
|
|||
|
|||
mod curves;
|
|||
mod fields;
|
|||
|
|||
pub use curves::*;
|
|||
pub use fields::*;
|
@ -0,0 +1,94 @@ |
|||
use crate::{Fq, Fr};
|
|||
use ark_ec::{
|
|||
models::{ModelParameters, MontgomeryModelParameters, TEModelParameters},
|
|||
twisted_edwards_extended::{GroupAffine, GroupProjective},
|
|||
};
|
|||
use ark_ff::{field_new, Field};
|
|||
#[cfg(test)]
|
|||
mod tests;
|
|||
|
|||
pub type EdwardsAffine = GroupAffine<EdwardsParameters>;
|
|||
pub type EdwardsProjective = GroupProjective<EdwardsParameters>;
|
|||
|
|||
/// `banersnatch` is a twisted Edwards curve. These curves have equations of the
|
|||
/// form: ax² + y² = 1 - dx²y².
|
|||
/// over some base finite field Fq.
|
|||
///
|
|||
/// banersnatch's curve equation: -5x² + y² = 1 - dx²y²
|
|||
///
|
|||
/// q = 52435875175126190479447740508185965837690552500527637822603658699938581184513.
|
|||
///
|
|||
/// a = 52435875175126190479447740508185965837690552500527637822603658699938581184508.
|
|||
/// d = (138827208126141220649022263972958607803/
|
|||
/// 171449701953573178309673572579671231137) mod q
|
|||
/// = 45022363124591815672509500913686876175488063829319466900776701791074614335719.
|
|||
///
|
|||
/// Sage script to calculate these:
|
|||
///
|
|||
/// ```text
|
|||
/// q = 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
|||
/// Fq = GF(q)
|
|||
/// d = (Fq(138827208126141220649022263972958607803)/Fq(171449701953573178309673572579671231137))
|
|||
/// ```
|
|||
/// These parameters and the sage script obtained from:
|
|||
/// <https://github.com/asanso/Bandersnatch/>
|
|||
#[derive(Clone, Default, PartialEq, Eq)]
|
|||
pub struct EdwardsParameters;
|
|||
|
|||
impl ModelParameters for EdwardsParameters {
|
|||
type BaseField = Fq;
|
|||
type ScalarField = Fr;
|
|||
}
|
|||
|
|||
impl TEModelParameters for EdwardsParameters {
|
|||
/// COEFF_A = -1
|
|||
#[rustfmt::skip]
|
|||
const COEFF_A: Fq = field_new!(Fq, "-5");
|
|||
|
|||
/// COEFF_D = (138827208126141220649022263972958607803/
|
|||
/// 171449701953573178309673572579671231137) mod q
|
|||
#[rustfmt::skip]
|
|||
const COEFF_D: Fq = field_new!(Fq, "45022363124591815672509500913686876175488063829319466900776701791074614335719");
|
|||
|
|||
/// COFACTOR = 4
|
|||
const COFACTOR: &'static [u64] = &[4];
|
|||
|
|||
/// COFACTOR^(-1) mod r =
|
|||
/// 9831726595336160714896451345284868594481866920080427688839802480047265754601
|
|||
#[rustfmt::skip]
|
|||
const COFACTOR_INV: Fr = field_new!(Fr, "9831726595336160714896451345284868594481866920080427688839802480047265754601");
|
|||
|
|||
/// AFFINE_GENERATOR_COEFFS = (GENERATOR_X, GENERATOR_Y)
|
|||
const AFFINE_GENERATOR_COEFFS: (Self::BaseField, Self::BaseField) = (GENERATOR_X, GENERATOR_Y);
|
|||
|
|||
type MontgomeryModelParameters = EdwardsParameters;
|
|||
|
|||
/// Multiplication by `a` is multiply by `-5`.
|
|||
#[inline(always)]
|
|||
fn mul_by_a(elem: &Self::BaseField) -> Self::BaseField {
|
|||
let t = (*elem).double().double();
|
|||
-(t + *elem)
|
|||
}
|
|||
}
|
|||
|
|||
impl MontgomeryModelParameters for EdwardsParameters {
|
|||
/// COEFF_A = 29978822694968839326280996386011761570173833766074948509196803838190355340952
|
|||
#[rustfmt::skip]
|
|||
const COEFF_A: Fq = field_new!(Fq, "29978822694968839326280996386011761570173833766074948509196803838190355340952");
|
|||
/// COEFF_B = 25465760566081946422412445027709227188579564747101592991722834452325077642517
|
|||
#[rustfmt::skip]
|
|||
const COEFF_B: Fq = field_new!(Fq, "25465760566081946422412445027709227188579564747101592991722834452325077642517");
|
|||
|
|||
type TEModelParameters = EdwardsParameters;
|
|||
}
|
|||
|
|||
// using the generator from bench.py (in affine form)
|
|||
// P = BandersnatchPoint(
|
|||
// 13738737789055671334382939318077718462576533426798874551591468520593954805549,
|
|||
// 11575885077368931610486103676191793534029821920164915325066801506752632626968,
|
|||
// 14458123306641001284399433086015669988340559992755622870694102351476334505845,
|
|||
// C)
|
|||
#[rustfmt::skip]
|
|||
const GENERATOR_X: Fq = field_new!(Fq, "29627151942733444043031429156003786749302466371339015363120350521834195802525");
|
|||
#[rustfmt::skip]
|
|||
const GENERATOR_Y: Fq = field_new!(Fq, "27488387519748396681411951718153463804682561779047093991696427532072116857978");
|
@ -0,0 +1,103 @@ |
|||
use crate::*;
|
|||
use ark_algebra_test_templates::{curves::*, groups::*};
|
|||
use ark_ec::{AffineCurve, ProjectiveCurve};
|
|||
use ark_ff::{bytes::FromBytes, Zero};
|
|||
use ark_std::{rand::Rng, str::FromStr, test_rng};
|
|||
|
|||
#[test]
|
|||
fn test_projective_curve() {
|
|||
curve_tests::<EdwardsProjective>();
|
|||
|
|||
edwards_tests::<EdwardsParameters>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_projective_group() {
|
|||
let mut rng = test_rng();
|
|||
let a = rng.gen();
|
|||
let b = rng.gen();
|
|||
for _i in 0..100 {
|
|||
group_test::<EdwardsProjective>(a, b);
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_affine_group() {
|
|||
let mut rng = test_rng();
|
|||
let a: EdwardsAffine = rng.gen();
|
|||
let b: EdwardsAffine = rng.gen();
|
|||
for _i in 0..100 {
|
|||
group_test::<EdwardsAffine>(a, b);
|
|||
}
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_generator() {
|
|||
let generator = EdwardsAffine::prime_subgroup_generator();
|
|||
assert!(generator.is_on_curve());
|
|||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_conversion() {
|
|||
let mut rng = test_rng();
|
|||
let a: EdwardsAffine = rng.gen();
|
|||
let b: EdwardsAffine = rng.gen();
|
|||
let a_b = {
|
|||
use ark_ec::group::Group;
|
|||
(a + &b).double().double()
|
|||
};
|
|||
let a_b2 = (a.into_projective() + &b.into_projective())
|
|||
.double()
|
|||
.double();
|
|||
assert_eq!(a_b, a_b2.into_affine());
|
|||
assert_eq!(a_b.into_projective(), a_b2);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_scalar_multiplication() {
|
|||
let f1 = Fr::from_str(
|
|||
"4257185345094557079734489188109952172285839137338142340240392707284963971010",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fr::from_str(
|
|||
"1617998875791656082457755819308421023664764572929977389209373068350490665160",
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
let g = EdwardsAffine::from_str(
|
|||
"(29627151942733444043031429156003786749302466371339015363120350521834195802525, \
|
|||
27488387519748396681411951718153463804682561779047093991696427532072116857978)",
|
|||
)
|
|||
.unwrap();
|
|||
let f1f2g = EdwardsAffine::from_str(
|
|||
"(16530491029447613915334753043669938793793987372416328257719459807614119987301, \
|
|||
42481140308370805476764840229335460092474682686441442216596889726548353970772)",
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
assert!(!g.is_zero());
|
|||
assert!(!f1f2g.is_zero());
|
|||
|
|||
let f1g = g.mul(f1).into_affine();
|
|||
assert_eq!(g.mul(f1 * &f2).into_affine(), f1f2g);
|
|||
assert_eq!(f1g.mul(f2).into_affine(), f1f2g);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_bytes() {
|
|||
let g_from_repr = EdwardsAffine::from_str(
|
|||
"(29627151942733444043031429156003786749302466371339015363120350521834195802525, \
|
|||
27488387519748396681411951718153463804682561779047093991696427532072116857978)",
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
let g_bytes = ark_ff::to_bytes![g_from_repr].unwrap();
|
|||
let g = EdwardsAffine::read(g_bytes.as_slice()).unwrap();
|
|||
assert_eq!(g_from_repr, g);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_montgomery_conversion() {
|
|||
montgomery_conversion_test::<EdwardsParameters>();
|
|||
}
|
@ -0,0 +1 @@ |
|||
pub use ark_bls12_381::{Fr as Fq, FrParameters as FqParameters};
|
@ -0,0 +1,115 @@ |
|||
use ark_ff::{
|
|||
biginteger::BigInteger256 as BigInteger,
|
|||
fields::{FftParameters, Fp256, Fp256Parameters, FpParameters},
|
|||
};
|
|||
|
|||
pub type Fr = Fp256<FrParameters>;
|
|||
|
|||
pub struct FrParameters;
|
|||
|
|||
impl Fp256Parameters for FrParameters {}
|
|||
impl FftParameters for FrParameters {
|
|||
type BigInt = BigInteger;
|
|||
|
|||
/// Let `N` be the size of the multiplicative group defined by the field.
|
|||
/// Then `TWO_ADICITY` is the two-adicity of `N`, i.e. the integer `s`
|
|||
/// such that `N = 2^s * t` for some odd integer `t`.
|
|||
const TWO_ADICITY: u32 = 5;
|
|||
|
|||
/// 2^s root of unity computed by GENERATOR^t
|
|||
/// 4740934665446857387895054948191089665295030226009829406950782728666658007874
|
|||
#[rustfmt::skip]
|
|||
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
|
|||
0xa4dcdba087826b42,
|
|||
0x6e4ab162f57f862a,
|
|||
0xabc5492749348d6a,
|
|||
0xa7b462035f8c169,
|
|||
]);
|
|||
}
|
|||
impl FpParameters for FrParameters {
|
|||
/// The modulus of the field.
|
|||
/// MODULUS = 13108968793781547619861935127046491459309155893440570251786403306729687672801.
|
|||
#[rustfmt::skip]
|
|||
const MODULUS: BigInteger = BigInteger([
|
|||
0x74fd06b52876e7e1,
|
|||
0xff8f870074190471,
|
|||
0x0cce760202687600,
|
|||
0x1cfb69d4ca675f52,
|
|||
]);
|
|||
|
|||
/// The number of bits needed to represent the `Self::MODULUS`.
|
|||
const MODULUS_BITS: u32 = 253;
|
|||
|
|||
/// The number of bits that can be reliably stored.
|
|||
/// (Should equal `SELF::MODULUS_BITS - 1`)
|
|||
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
|
|||
|
|||
/// The number of bits that must be shaved from the beginning of
|
|||
/// the representation when randomly sampling.
|
|||
const REPR_SHAVE_BITS: u32 = 4;
|
|||
|
|||
/// Let `M` be the power of 2^64 nearest to `Self::MODULUS_BITS`. Then
|
|||
/// `R = M % Self::MODULUS`.
|
|||
/// R = 10920338887063814464675503992315976178796737518116002025166357554075628257528
|
|||
#[rustfmt::skip]
|
|||
const R: BigInteger = BigInteger([
|
|||
0x5817ca56bc48c0f8,
|
|||
0x0383c7fc5f37dc74,
|
|||
0x998c4fefecbc4ff8,
|
|||
0x1824b159acc5056f,
|
|||
]);
|
|||
|
|||
/// R2 = R^2 % Self::MODULUS
|
|||
/// R2 = 4932290691328759802879919559207542894238895193980447506221046538067943049163
|
|||
#[rustfmt::skip]
|
|||
const R2: BigInteger = BigInteger([
|
|||
0xdbb4f5d658db47cb,
|
|||
0x40fa7ca27fecb938,
|
|||
0xaa9e6daec0055cea,
|
|||
0xae793ddb14aec7d
|
|||
]);
|
|||
|
|||
/// INV = -MODULUS^{-1} mod 2^64
|
|||
/// INV = 17410672245482742751
|
|||
const INV: u64 = 0xf19f22295cc063df;
|
|||
|
|||
/// A multiplicative generator of the field.
|
|||
/// `Self::GENERATOR` is an element having multiplicative order
|
|||
/// `Self::MODULUS - 1`.
|
|||
/// n = 9962557815892774795293348142308860067333132192265356416788884706064406244838
|
|||
#[rustfmt::skip]
|
|||
const GENERATOR: BigInteger = BigInteger([
|
|||
0x56b6f3ab7b616de6,
|
|||
0x114f419d6c9083e5,
|
|||
0xbf518d217780c4b9,
|
|||
0x16069b9f45dbce7f,
|
|||
]);
|
|||
|
|||
/// (Self::MODULUS - 1) / 2
|
|||
/// 6554484396890773809930967563523245729654577946720285125893201653364843836400
|
|||
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
|||
0xba7e835a943b73f0,
|
|||
0x7fc7c3803a0c8238,
|
|||
0x06673b0101343b00,
|
|||
0xe7db4ea6533afa9,
|
|||
]);
|
|||
|
|||
/// t for 2^s * t = MODULUS - 1, and t coprime to 2.
|
|||
/// t = 409655274805673363120685472720202858103411121670017820368325103335302739775
|
|||
/// = (modulus-1)/2^5
|
|||
const T: BigInteger = BigInteger([
|
|||
0x8ba7e835a943b73f,
|
|||
0x07fc7c3803a0c823,
|
|||
0x906673b0101343b0,
|
|||
0xe7db4ea6533afa,
|
|||
]);
|
|||
|
|||
/// (t - 1) / 2
|
|||
/// = 204827637402836681560342736360101429051705560835008910184162551667651369887
|
|||
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
|
|||
0xc5d3f41ad4a1db9f,
|
|||
0x03fe3e1c01d06411,
|
|||
0x483339d80809a1d8,
|
|||
0x73eda753299d7d,
|
|||
]);
|
|||
}
|
@ -0,0 +1,8 @@ |
|||
pub mod fq;
|
|||
pub mod fr;
|
|||
|
|||
pub use fq::*;
|
|||
pub use fr::*;
|
|||
|
|||
#[cfg(all(feature = "ed_on_bls12_381_bandersnatch", test))]
|
|||
mod tests;
|
@ -0,0 +1,423 @@ |
|||
use crate::{Fq, Fr};
|
|||
use ark_algebra_test_templates::fields::*;
|
|||
use ark_ff::{
|
|||
biginteger::BigInteger256 as BigInteger,
|
|||
bytes::{FromBytes, ToBytes},
|
|||
fields::{Field, LegendreSymbol::*, SquareRootField},
|
|||
One, Zero,
|
|||
};
|
|||
use ark_std::{rand::Rng, str::FromStr, test_rng};
|
|||
|
|||
#[test]
|
|||
fn test_fr() {
|
|||
let mut rng = test_rng();
|
|||
let a: Fr = rng.gen();
|
|||
let b: Fr = rng.gen();
|
|||
field_test(a, b);
|
|||
primefield_test::<Fr>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq() {
|
|||
let mut rng = test_rng();
|
|||
let a: Fq = rng.gen();
|
|||
let b: Fq = rng.gen();
|
|||
field_test(a, b);
|
|||
primefield_test::<Fq>();
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_add() {
|
|||
let f1 = Fq::from_str(
|
|||
"18386742314266644595564329008376577163854043021652781768352795308532764650733",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fq::from_str(
|
|||
"39786307610986038981023499868190793548353538256264351797285876981647142458383",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"5737174750126493097140088368381404874517028777389495743035013590241325924603",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f2.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
assert_eq!(f1 + &f2, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_add_one() {
|
|||
let f1 = Fq::from_str(
|
|||
"4946875394261337176810256604189376311946643975348516311606738923340201185904",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fq::from_str(
|
|||
"4946875394261337176810256604189376311946643975348516311606738923340201185905",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f2.is_zero());
|
|||
assert_eq!(f1 + &Fq::one(), f2);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_mul() {
|
|||
let f1 = Fq::from_str(
|
|||
"24703123148064348394273033316595937198355721297494556079070134653139656190956",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fq::from_str(
|
|||
"38196797080882758914424853878212529985425118523754343117256179679117054302131",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"38057113854472161555556064369220825628027487067886761874351491955834635348140",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f2.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
assert_eq!(f1 * &f2, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_triple_mul() {
|
|||
let f1 = Fq::from_str(
|
|||
"23834398828139479510988224171342199299644042568628082836691700490363123893905",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fq::from_str(
|
|||
"48343809612844640454129919255697536258606705076971130519928764925719046689317",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"22704845471524346880579660022678666462201713488283356385810726260959369106033",
|
|||
)
|
|||
.unwrap();
|
|||
let f4 = Fq::from_str(
|
|||
"18897508522635316277030308074760673440128491438505204942623624791502972539393",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f2.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
assert_eq!(f1 * &f2 * &f3, f4);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_div() {
|
|||
let f1 = Fq::from_str(
|
|||
"31892744363926593013886463524057935370302352424137349660481695792871889573091",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fq::from_str(
|
|||
"47695868328933459965610498875668250916462767196500056002116961816137113470902",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"29049672724678710659792141917402891276693777283079976086581207190825261000580",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f2.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
assert_eq!(f1 / &f2, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_sub() {
|
|||
let f1 = Fq::from_str(
|
|||
"18695869713129401390241150743745601908470616448391638969502807001833388904079",
|
|||
)
|
|||
.unwrap();
|
|||
let f2 = Fq::from_str(
|
|||
"10105476028534616828778879109836101003805485072436929139123765141153277007373",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"8590393684594784561462271633909500904665131375954709830379041860680111896706",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f2.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
assert_eq!(f1 - &f2, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_double_in_place() {
|
|||
let mut f1 = Fq::from_str(
|
|||
"29729289787452206300641229002276778748586801323231253291984198106063944136114",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"7022704399778222121834717496367591659483050145934868761364737512189307087715",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
f1.double_in_place();
|
|||
assert_eq!(f1, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_double_in_place_thrice() {
|
|||
let mut f1 = Fq::from_str(
|
|||
"32768907806651393940832831055386272949401004221411141755415956893066040832473",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"52407761752706389608871686410346320244445823769178582752913020344774001921732",
|
|||
)
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
f1.double_in_place();
|
|||
f1.double_in_place();
|
|||
f1.double_in_place();
|
|||
assert_eq!(f1, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_generate_random_ed_on_bls12_381_point() {
|
|||
let d = Fq::from_str(
|
|||
"19257038036680949359750312669786877991949435402254120286184196891950884077233",
|
|||
)
|
|||
.unwrap();
|
|||
let y = Fq::from_str(
|
|||
"20269054604167148422407276086932743904275456233139568486008667107872965128512",
|
|||
)
|
|||
.unwrap();
|
|||
let x2 = Fq::from_str(
|
|||
"35041048504708632193693740149219726446678304552734087046982753200179718192840",
|
|||
)
|
|||
.unwrap();
|
|||
|
|||
let computed_y2 = y.square();
|
|||
let y2 = Fq::from_str(
|
|||
"22730681238307918419349440108285755984465605552827817317611903495170775437833",
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(y2, computed_y2);
|
|||
|
|||
let computed_dy2 = d * &computed_y2;
|
|||
let dy2 = Fq::from_str(
|
|||
"24720347560552809545835752815204882739669031262711919770503096707526812943411",
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(dy2, computed_dy2);
|
|||
|
|||
let computed_divisor = computed_dy2 + &Fq::one();
|
|||
let divisor = Fq::from_str(
|
|||
"24720347560552809545835752815204882739669031262711919770503096707526812943412",
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(divisor, computed_divisor);
|
|||
|
|||
let computed_x2 = (computed_y2 - &Fq::one()) / &computed_divisor;
|
|||
assert_eq!(x2, computed_x2);
|
|||
|
|||
let x = Fq::from_str(
|
|||
"15337652609730546173818014678723269532482775720866471265774032070871608223361",
|
|||
)
|
|||
.unwrap();
|
|||
let computed_x = computed_x2.sqrt().unwrap();
|
|||
assert_eq!(computed_x.square(), x2);
|
|||
assert_eq!(x, computed_x);
|
|||
|
|||
fn add<'a>(curr: (Fq, Fq), other: &'a (Fq, Fq)) -> (Fq, Fq) {
|
|||
let y1y2 = curr.1 * &other.1;
|
|||
let x1x2 = curr.0 * &other.0;
|
|||
let d = Fq::from_str(
|
|||
"19257038036680949359750312669786877991949435402254120286184196891950884077233",
|
|||
)
|
|||
.unwrap();
|
|||
let dx1x2y1y2 = d * &y1y2 * &x1x2;
|
|||
|
|||
let d1 = Fq::one() + &dx1x2y1y2;
|
|||
let d2 = Fq::one() - &dx1x2y1y2;
|
|||
|
|||
let x1y2 = curr.0 * &other.1;
|
|||
let y1x2 = curr.1 * &other.0;
|
|||
|
|||
let x = (x1y2 + &y1x2) / &d1;
|
|||
let y = (y1y2 + &x1x2) / &d2;
|
|||
|
|||
(x, y)
|
|||
}
|
|||
|
|||
let result = add((x, y), &(x, y));
|
|||
let result = add(result, &result);
|
|||
let result = add(result, &result);
|
|||
|
|||
let point_x = Fq::from_str(
|
|||
"47259664076168047050113154262636619161204477920503059672059915868534495873964",
|
|||
)
|
|||
.unwrap();
|
|||
let point_y = Fq::from_str(
|
|||
"19016409245280491801573912449420132838852726543024859389273314249842195919690",
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!((point_x, point_y), result);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_square_in_place() {
|
|||
let mut f1 = Fq::from_str(
|
|||
"34864651240005695523200639428464570946052769938774601449735727714436878540682",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 =
|
|||
Fq::from_str("213133100629336594719108316042277780359104840987226496279264105585804377948")
|
|||
.unwrap();
|
|||
assert!(!f1.is_zero());
|
|||
assert!(!f3.is_zero());
|
|||
f1.square_in_place();
|
|||
assert_eq!(f1, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_sqrt() {
|
|||
let f1 = Fq::from_str(
|
|||
"10875927553327821418567659853801220899541454800710193788767706167237535308235",
|
|||
)
|
|||
.unwrap();
|
|||
let f3 = Fq::from_str(
|
|||
"10816221372957505053219354782681292880545918527618367765651802809826238616708",
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(f1.sqrt().unwrap(), f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_from_str() {
|
|||
let f1_from_repr = Fq::from(BigInteger([
|
|||
0xab8a2535947d1a77,
|
|||
0x9ba74cbfda0bbcda,
|
|||
0xe928b59724d60baf,
|
|||
0x1cccaaeb9bb1680a,
|
|||
]));
|
|||
let f1 = Fq::from_str(
|
|||
"13026376210409056429264774981357153555336288129100724591327877625017068755575",
|
|||
)
|
|||
.unwrap();
|
|||
let f2_from_repr = Fq::from(BigInteger([
|
|||
0x97e9103775d2f35c,
|
|||
0xbe6756b6c587544b,
|
|||
0x6ee38c3afd88ef4b,
|
|||
0x2bacd150f540c677,
|
|||
]));
|
|||
let f2 = Fq::from_str(
|
|||
"19754794831832707859764530223239420866832328728734160755396495950822165902172",
|
|||
)
|
|||
.unwrap();
|
|||
assert_eq!(f1_from_repr, f1);
|
|||
assert_eq!(f2_from_repr, f2);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_legendre() {
|
|||
assert_eq!(QuadraticResidue, Fq::one().legendre());
|
|||
assert_eq!(Zero, Fq::zero().legendre());
|
|||
|
|||
let e = BigInteger([
|
|||
0x0dbc5349cd5664da,
|
|||
0x8ac5b6296e3ae29d,
|
|||
0x127cb819feceaa3b,
|
|||
0x3a6b21fb03867191,
|
|||
]);
|
|||
assert_eq!(QuadraticResidue, Fq::from(e).legendre());
|
|||
let e = BigInteger([
|
|||
0x96341aefd047c045,
|
|||
0x9b5f4254500a4d65,
|
|||
0x1ee08223b68ac240,
|
|||
0x31d9cd545c0ec7c6,
|
|||
]);
|
|||
assert_eq!(QuadraticNonResidue, Fq::from(e).legendre());
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fq_bytes() {
|
|||
let f1_from_repr = Fq::from(BigInteger([
|
|||
0xab8a2535947d1a77,
|
|||
0x9ba74cbfda0bbcda,
|
|||
0xe928b59724d60baf,
|
|||
0x1cccaaeb9bb1680a,
|
|||
]));
|
|||
|
|||
let mut f1_bytes = [0u8; 32];
|
|||
f1_from_repr.write(f1_bytes.as_mut()).unwrap();
|
|||
|
|||
let f1 = Fq::read(f1_bytes.as_ref()).unwrap();
|
|||
assert_eq!(f1_from_repr, f1);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fr_add() {
|
|||
let f1 = Fr::from(BigInteger([
|
|||
0xc81265fb4130fe0c,
|
|||
0xb308836c14e22279,
|
|||
0x699e887f96bff372,
|
|||
0x84ecc7e76c11ad,
|
|||
]));
|
|||
let f2 = Fr::from(BigInteger([
|
|||
0x71875719b422efb8,
|
|||
0x0043658e68a93612,
|
|||
0x9fa756be2011e833,
|
|||
0xaa2b2cb08dac497,
|
|||
]));
|
|||
let f3 = Fr::from(BigInteger([
|
|||
0x3999bd14f553edc4,
|
|||
0xb34be8fa7d8b588c,
|
|||
0x0945df3db6d1dba5,
|
|||
0xb279f92f046d645,
|
|||
]));
|
|||
assert_eq!(f1 + &f2, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fr_mul() {
|
|||
let f1 = Fr::from(BigInteger([
|
|||
0xc81265fb4130fe0c,
|
|||
0xb308836c14e22279,
|
|||
0x699e887f96bff372,
|
|||
0x84ecc7e76c11ad,
|
|||
]));
|
|||
let f2 = Fr::from(BigInteger([
|
|||
0x71875719b422efb8,
|
|||
0x43658e68a93612,
|
|||
0x9fa756be2011e833,
|
|||
0xaa2b2cb08dac497,
|
|||
]));
|
|||
let f3 = Fr::from(BigInteger([
|
|||
0xbe3e50c164fe3381,
|
|||
0x5ac45bc180974585,
|
|||
0x1c234ad6dcdc70c9,
|
|||
0x15a75fba99bc8ad,
|
|||
]));
|
|||
assert_eq!(f1 * &f2, f3);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fr_bytes() {
|
|||
let f1_from_repr = Fr::from(BigInteger([
|
|||
0xc81265fb4130fe0c,
|
|||
0xb308836c14e22279,
|
|||
0x699e887f96bff372,
|
|||
0x84ecc7e76c11ad,
|
|||
]));
|
|||
|
|||
let mut f1_bytes = [0u8; 32];
|
|||
f1_from_repr.write(f1_bytes.as_mut()).unwrap();
|
|||
|
|||
let f1 = Fr::read(f1_bytes.as_ref()).unwrap();
|
|||
assert_eq!(f1_from_repr, f1);
|
|||
}
|
|||
|
|||
#[test]
|
|||
fn test_fr_from_str() {
|
|||
let f100_from_repr = Fr::from(BigInteger([0x64, 0, 0, 0]));
|
|||
let f100 = Fr::from_str("100").unwrap();
|
|||
assert_eq!(f100_from_repr, f100);
|
|||
}
|
@ -0,0 +1,37 @@ |
|||
#![cfg_attr(not(feature = "std"), no_std)]
|
|||
#![deny(
|
|||
warnings,
|
|||
unused,
|
|||
future_incompatible,
|
|||
nonstandard_style,
|
|||
rust_2018_idioms
|
|||
)]
|
|||
#![forbid(unsafe_code)]
|
|||
|
|||
//! This library implements the Bendersnatch curve, a twisted Edwards curve
|
|||
//! whose base field is the scalar field of the curve BLS12-381. This allows
|
|||
//! defining cryptographic primitives that use elliptic curves over the scalar
|
|||
//! field of the latter curve. This curve was generated by Simon Masson from Anoma,
|
|||
//! and Antonio Sanso from Ethereum Foundation, and is also known as [bandersnatch](https://ethresear.ch/t/introducing-bandersnatch-a-fast-elliptic-curve-built-over-the-bls12-381-scalar-field/9957).
|
|||
//!
|
|||
//! See [here](https://github.com/asanso/Bandersnatch/blob/main/README.md) for the specification of the curve.
|
|||
//! There was also a Python implementation [here](https://github.com/asanso/Bandersnatch/).
|
|||
//!
|
|||
//! Curve information:
|
|||
//! * Base field: q =
|
|||
//! 52435875175126190479447740508185965837690552500527637822603658699938581184513
|
|||
//! * Scalar field: r =
|
|||
//! 13108968793781547619861935127046491459309155893440570251786403306729687672801
|
|||
//! * Valuation(q - 1, 2) = 32
|
|||
//! * Valuation(r - 1, 2) = 5
|
|||
//! * Curve equation: ax^2 + y^2 =1 + dx^2y^2, where
|
|||
//! * a = -5
|
|||
//! * d = 45022363124591815672509500913686876175488063829319466900776701791074614335719
|
|||
|
|||
#[cfg(feature = "r1cs")]
|
|||
pub mod constraints;
|
|||
mod curves;
|
|||
mod fields;
|
|||
|
|||
pub use curves::*;
|
|||
pub use fields::*;
|