@ -1,9 +1,12 @@
use crate ::* ;
use crate ::* ;
use ark_ec ::bls12 ::Bls12Parameters ;
use ark_ec ::{
use ark_ec ::{
bls12 ,
bls12 ,
models ::{ ModelParameters , SWModelParameters } ,
models ::{ ModelParameters , SWModelParameters } ,
short_weierstrass_jacobian ::GroupAffine ,
AffineCurve ,
} ;
} ;
use ark_ff ::{ field_new , Zero } ;
use ark_ff ::{ biginteger ::BigInteger256 , field_new , Field , Zero } ;
pub type G2Affine = bls12 ::G2Affine < crate ::Parameters > ;
pub type G2Affine = bls12 ::G2Affine < crate ::Parameters > ;
pub type G2Projective = bls12 ::G2Projective < crate ::Parameters > ;
pub type G2Projective = bls12 ::G2Projective < crate ::Parameters > ;
@ -51,6 +54,21 @@ impl SWModelParameters for Parameters {
fn mul_by_a ( _ : & Self ::BaseField ) -> Self ::BaseField {
fn mul_by_a ( _ : & Self ::BaseField ) -> Self ::BaseField {
Self ::BaseField ::zero ( )
Self ::BaseField ::zero ( )
}
}
fn is_in_correct_subgroup_assuming_on_curve ( point : & GroupAffine < Parameters > ) -> bool {
// Algorithm from Section 4 of https://eprint.iacr.org/2021/1130.
//
// Checks that [p]P = [X]P
let mut x_times_point = point . mul ( BigInteger256 ( [ crate ::Parameters ::X [ 0 ] , 0 , 0 , 0 ] ) ) ;
if crate ::Parameters ::X_IS_NEGATIVE {
x_times_point = - x_times_point ;
}
let p_times_point = p_power_endomorphism ( point ) ;
x_times_point . eq ( & p_times_point )
}
}
}
pub const G2_GENERATOR_X : Fq2 = field_new ! ( Fq2 , G2_GENERATOR_X_C0 , G2_GENERATOR_X_C1 ) ;
pub const G2_GENERATOR_X : Fq2 = field_new ! ( Fq2 , G2_GENERATOR_X_C0 , G2_GENERATOR_X_C1 ) ;
@ -75,3 +93,52 @@ pub const G2_GENERATOR_Y_C0: Fq = field_new!(Fq, "198515060228729193556805452117
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
/// 927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582
#[ rustfmt::skip ]
#[ rustfmt::skip ]
pub const G2_GENERATOR_Y_C1 : Fq = field_new ! ( Fq , "927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582" ) ;
pub const G2_GENERATOR_Y_C1 : Fq = field_new ! ( Fq , "927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582" ) ;
// psi(x,y) = (x**p * PSI_X, y**p * PSI_Y) is the Frobenius composed
// with the quadratic twist and its inverse
// PSI_X = 1/(u+1)^((p-1)/3)
pub const P_POWER_ENDOMORPHISM_COEFF_0 : Fq2 = field_new ! (
Fq2 ,
FQ_ZERO ,
field_new ! (
Fq ,
"4002409555221667392624310435006688643935503118305586438271171395842971157480381377015405980053539358417135540939437"
)
) ;
// PSI_Y = 1/(u+1)^((p-1)/2)
pub const P_POWER_ENDOMORPHISM_COEFF_1 : Fq2 = field_new ! (
Fq2 ,
field_new ! (
Fq ,
"2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530" ) ,
field_new ! (
Fq ,
"1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257" )
) ;
pub fn p_power_endomorphism ( p : & GroupAffine < Parameters > ) -> GroupAffine < Parameters > {
// The p-power endomorphism for G2 is defined as follows:
// 1. Note that G2 is defined on curve E': y^2 = x^3 + 4(u+1). To map a point (x, y) in E' to (s, t) in E,
// one set s = x / ((u+1) ^ (1/3)), t = y / ((u+1) ^ (1/2)), because E: y^2 = x^3 + 4.
// 2. Apply the Frobenius endomorphism (s, t) => (s', t'), another point on curve E,
// where s' = s^p, t' = t^p.
// 3. Map the point from E back to E'; that is,
// one set x' = s' * ((u+1) ^ (1/3)), y' = t' * ((u+1) ^ (1/2)).
//
// To sum up, it maps
// (x,y) -> (x^p / ((u+1)^((p-1)/3)), y^p / ((u+1)^((p-1)/2)))
// as implemented in the code as follows.
let mut res = * p ;
res . x . frobenius_map ( 1 ) ;
res . y . frobenius_map ( 1 ) ;
let tmp_x = res . x . clone ( ) ;
res . x . c0 = - P_POWER_ENDOMORPHISM_COEFF_0 . c1 * & tmp_x . c1 ;
res . x . c1 = P_POWER_ENDOMORPHISM_COEFF_0 . c1 * & tmp_x . c0 ;
res . y * = P_POWER_ENDOMORPHISM_COEFF_1 ;
res
}