Add Pallas and Vesta curves (#21)

Co-authored-by: Ying Tong Lai <yingtong@electriccoin.co>
Co-authored-by: Daira Hopwood <daira@jacaranda.org>
Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>
Co-authored-by: therealyingtong <yingtong@z.cash>
This commit is contained in:
Daira Hopwood
2020-12-31 00:56:00 +00:00
committed by GitHub
parent e7d7d01a02
commit 39c58df3a6
25 changed files with 840 additions and 10 deletions

90
pallas/src/fields/fq.rs Normal file
View File

@@ -0,0 +1,90 @@
use ark_ff::{
biginteger::BigInteger256 as BigInteger,
fields::{FftParameters, Fp256, Fp256Parameters},
};
pub type Fq = Fp256<FqParameters>;
pub struct FqParameters;
impl Fp256Parameters for FqParameters {}
impl FftParameters for FqParameters {
type BigInt = BigInteger;
const TWO_ADICITY: u32 = 32;
// TWO_ADIC_ROOT_OF_UNITY = GENERATOR^T
// Encoded in Montgomery form, so the value here is (5^T)R mod p.
const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([
0xa28db849bad6dbf0,
0x9083cd03d3b539df,
0xfba6b9ca9dc8448e,
0x3ec928747b89c6da,
]);
}
impl ark_ff::fields::FpParameters for FqParameters {
// 28948022309329048855892746252171976963363056481941560715954676764349967630337
const MODULUS: BigInteger = BigInteger([
0x992d30ed00000001,
0x224698fc094cf91b,
0x0000000000000000,
0x4000000000000000,
]);
// R = 2^256 mod p
const R: BigInteger = BigInteger([
0x34786d38fffffffd,
0x992c350be41914ad,
0xffffffffffffffff,
0x3fffffffffffffff,
]);
// R2 = (2^256)^2 mod p
const R2: BigInteger = BigInteger([
0x8c78ecb30000000f,
0xd7d30dbd8b0de0e7,
0x7797a99bc3c95d18,
0x096d41af7b9cb714,
]);
const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
0xcc96987680000000,
0x11234c7e04a67c8d,
0x0000000000000000,
0x2000000000000000,
]);
// T and T_MINUS_ONE_DIV_TWO, where MODULUS - 1 = 2^S * T
const T: BigInteger = BigInteger([
0x094cf91b992d30ed,
0x00000000224698fc,
0x0000000000000000,
0x0000000040000000,
]);
const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([
0x04a67c8dcc969876,
0x0000000011234c7e,
0x0000000000000000,
0x0000000020000000,
]);
// GENERATOR = 5
// Encoded in Montgomery form, so the value here is 5R mod p.
const GENERATOR: BigInteger = BigInteger([
0xa1a55e68ffffffed,
0x74c2a54b4f4982f3,
0xfffffffffffffffd,
0x3fffffffffffffff,
]);
const MODULUS_BITS: u32 = 255;
const CAPACITY: u32 = Self::MODULUS_BITS - 1;
const REPR_SHAVE_BITS: u32 = 1;
// INV = -p^{-1} (mod 2^64)
const INV: u64 = 11037532056220336127;
}