|
|
@ -5,7 +5,7 @@ use ark_ec::{ |
|
|
|
short_weierstrass::{Affine, SWCurveConfig},
|
|
|
|
AffineCurve, ProjectiveCurve,
|
|
|
|
};
|
|
|
|
use ark_ff::{biginteger::BigInteger256, Field, MontFp, Zero};
|
|
|
|
use ark_ff::{Field, MontFp, Zero};
|
|
|
|
use ark_std::ops::Neg;
|
|
|
|
|
|
|
|
use crate::*;
|
|
|
@ -50,17 +50,15 @@ impl SWCurveConfig for Parameters { |
|
|
|
//
|
|
|
|
// Check that endomorphism_p(P) == -[X^2]P
|
|
|
|
|
|
|
|
let x = BigInteger256::new([crate::Parameters::X[0], 0, 0, 0]);
|
|
|
|
|
|
|
|
// An early-out optimization described in Section 6.
|
|
|
|
// If uP == P but P != point of infinity, then the point is not in the right
|
|
|
|
// subgroup.
|
|
|
|
let x_times_p = p.mul(x);
|
|
|
|
let x_times_p = p.mul_bigint(crate::Parameters::X);
|
|
|
|
if x_times_p.eq(p) && !p.infinity {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
let minus_x_squared_times_p = x_times_p.mul(x).neg();
|
|
|
|
let minus_x_squared_times_p = x_times_p.mul_bigint(crate::Parameters::X).neg();
|
|
|
|
let endomorphism_p = endomorphism(p);
|
|
|
|
minus_x_squared_times_p.eq(&endomorphism_p)
|
|
|
|
}
|
|
|
|