mirror of
https://github.com/arnaucube/ark-curves-cherry-picked.git
synced 2026-01-27 22:23:48 +01:00
Initial commit
This commit is contained in:
504
bn254/src/fields/tests.rs
Normal file
504
bn254/src/fields/tests.rs
Normal file
@@ -0,0 +1,504 @@
|
||||
use ark_ff::{
|
||||
biginteger::{BigInteger, BigInteger256},
|
||||
fields::{
|
||||
fp6_3over2::Fp6Parameters, FftField, FftParameters, Field, FpParameters, PrimeField,
|
||||
SquareRootField,
|
||||
},
|
||||
test_rng, One, UniformRand, Zero,
|
||||
};
|
||||
use ark_serialize::{buffer_bit_byte_size, CanonicalSerialize};
|
||||
use core::{
|
||||
cmp::Ordering,
|
||||
ops::{AddAssign, MulAssign, SubAssign},
|
||||
};
|
||||
use rand::{Rng, SeedableRng};
|
||||
use rand_xorshift::XorShiftRng;
|
||||
|
||||
use crate::{Fq, Fq12, Fq2, Fq6, Fq6Parameters, FqParameters, Fr};
|
||||
use ark_curve_tests::fields::*;
|
||||
|
||||
pub(crate) const ITERATIONS: usize = 5;
|
||||
|
||||
#[test]
|
||||
fn test_fr() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let a: Fr = rng.gen();
|
||||
let b: Fr = rng.gen();
|
||||
field_test(a, b);
|
||||
primefield_test::<Fr>();
|
||||
sqrt_field_test(b);
|
||||
let byte_size = a.serialized_size();
|
||||
field_serialization_test::<Fr>(byte_size);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let a: Fq = rng.gen();
|
||||
let b: Fq = rng.gen();
|
||||
field_test(a, b);
|
||||
primefield_test::<Fq>();
|
||||
sqrt_field_test(a);
|
||||
let byte_size = a.serialized_size();
|
||||
let (_, buffer_size) = buffer_bit_byte_size(Fq::size_in_bits());
|
||||
assert_eq!(byte_size, buffer_size);
|
||||
field_serialization_test::<Fq>(byte_size);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let a: Fq2 = rng.gen();
|
||||
let b: Fq2 = rng.gen();
|
||||
field_test(a, b);
|
||||
sqrt_field_test(a);
|
||||
}
|
||||
frobenius_test::<Fq2, _>(Fq::characteristic(), 13);
|
||||
let byte_size = Fq2::zero().serialized_size();
|
||||
field_serialization_test::<Fq2>(byte_size);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq6() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let g: Fq6 = rng.gen();
|
||||
let h: Fq6 = rng.gen();
|
||||
field_test(g, h);
|
||||
}
|
||||
frobenius_test::<Fq6, _>(Fq::characteristic(), 13);
|
||||
let byte_size = Fq6::zero().serialized_size();
|
||||
field_serialization_test::<Fq6>(byte_size);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq12() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let g: Fq12 = rng.gen();
|
||||
let h: Fq12 = rng.gen();
|
||||
field_test(g, h);
|
||||
}
|
||||
frobenius_test::<Fq12, _>(Fq::characteristic(), 13);
|
||||
let byte_size = Fq12::zero().serialized_size();
|
||||
field_serialization_test::<Fq12>(byte_size);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_from() {
|
||||
assert_eq!(BigInteger256::from(100), BigInteger256([100, 0, 0, 0]));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_is_odd() {
|
||||
assert!(!BigInteger256::from(0).is_odd());
|
||||
assert!(BigInteger256::from(0).is_even());
|
||||
assert!(BigInteger256::from(1).is_odd());
|
||||
assert!(!BigInteger256::from(1).is_even());
|
||||
assert!(!BigInteger256::from(324834872).is_odd());
|
||||
assert!(BigInteger256::from(324834872).is_even());
|
||||
assert!(BigInteger256::from(324834873).is_odd());
|
||||
assert!(!BigInteger256::from(324834873).is_even());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_is_zero() {
|
||||
assert!(BigInteger256::from(0).is_zero());
|
||||
assert!(!BigInteger256::from(1).is_zero());
|
||||
assert!(!BigInteger256([0, 0, 1, 0]).is_zero());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_num_bits() {
|
||||
let mut a = BigInteger256::from(0);
|
||||
assert_eq!(0, a.num_bits());
|
||||
a = BigInteger256::from(1);
|
||||
for i in 1..257 {
|
||||
assert_eq!(i, a.num_bits());
|
||||
a.mul2();
|
||||
}
|
||||
assert_eq!(0, a.num_bits());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_add_assign() {
|
||||
// Test associativity
|
||||
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Generate a, b, c and ensure (a + b) + c == a + (b + c).
|
||||
let a = Fq::rand(&mut rng);
|
||||
let b = Fq::rand(&mut rng);
|
||||
let c = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.add_assign(&c);
|
||||
|
||||
let mut tmp2 = b;
|
||||
tmp2.add_assign(&c);
|
||||
tmp2.add_assign(&a);
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_sub_assign() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure that (a - b) + (b - a) = 0.
|
||||
let a = Fq::rand(&mut rng);
|
||||
let b = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.sub_assign(&b);
|
||||
|
||||
let mut tmp2 = b;
|
||||
tmp2.sub_assign(&a);
|
||||
|
||||
tmp1.add_assign(&tmp2);
|
||||
assert!(tmp1.is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_mul_assign() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that (a * b) * c = a * (b * c)
|
||||
let a = Fq::rand(&mut rng);
|
||||
let b = Fq::rand(&mut rng);
|
||||
let c = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.mul_assign(&b);
|
||||
tmp1.mul_assign(&c);
|
||||
|
||||
let mut tmp2 = b;
|
||||
tmp2.mul_assign(&c);
|
||||
tmp2.mul_assign(&a);
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
}
|
||||
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that r * (a + b + c) = r*a + r*b + r*c
|
||||
|
||||
let r = Fq::rand(&mut rng);
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let mut b = Fq::rand(&mut rng);
|
||||
let mut c = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.add_assign(&c);
|
||||
tmp1.mul_assign(&r);
|
||||
|
||||
a.mul_assign(&r);
|
||||
b.mul_assign(&r);
|
||||
c.mul_assign(&r);
|
||||
|
||||
a.add_assign(&b);
|
||||
a.add_assign(&c);
|
||||
|
||||
assert_eq!(tmp1, a);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_squaring() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that (a * a) = a^2
|
||||
let a = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp = a;
|
||||
tmp.square_in_place();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.mul_assign(&a);
|
||||
|
||||
assert_eq!(tmp, tmp2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_inverse() {
|
||||
assert!(Fq::zero().inverse().is_none());
|
||||
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
let one = Fq::one();
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure that a * a^-1 = 1
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let ainv = a.inverse().unwrap();
|
||||
a.mul_assign(&ainv);
|
||||
assert_eq!(a, one);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_double_in_place() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure doubling a is equivalent to adding a to itself.
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let mut b = a;
|
||||
b.add_assign(&a);
|
||||
a.double_in_place();
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_negate() {
|
||||
{
|
||||
let a = -Fq::zero();
|
||||
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure (a - (-a)) = 0.
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let b = -a;
|
||||
a.add_assign(&b);
|
||||
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_pow() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for i in 0..1000 {
|
||||
// Exponentiate by various small numbers and ensure it consists with repeated
|
||||
// multiplication.
|
||||
let a = Fq::rand(&mut rng);
|
||||
let target = a.pow(&[i]);
|
||||
let mut c = Fq::one();
|
||||
for _ in 0..i {
|
||||
c.mul_assign(&a);
|
||||
}
|
||||
assert_eq!(c, target);
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Exponentiating by the modulus should have no effect in a prime field.
|
||||
let a = Fq::rand(&mut rng);
|
||||
|
||||
assert_eq!(a, a.pow(Fq::characteristic()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_sqrt() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
assert_eq!(Fq::zero().sqrt().unwrap(), Fq::zero());
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure sqrt(a^2) = a or -a
|
||||
let a = Fq::rand(&mut rng);
|
||||
let nega = -a;
|
||||
let mut b = a;
|
||||
b.square_in_place();
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
|
||||
assert!(a == b || nega == b);
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure sqrt(a)^2 = a for random a
|
||||
let a = Fq::rand(&mut rng);
|
||||
|
||||
if let Some(mut tmp) = a.sqrt() {
|
||||
tmp.square_in_place();
|
||||
|
||||
assert_eq!(a, tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_num_bits() {
|
||||
assert_eq!(FqParameters::MODULUS_BITS, 254);
|
||||
assert_eq!(FqParameters::CAPACITY, 253);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_root_of_unity() {
|
||||
assert_eq!(FqParameters::TWO_ADICITY, 1);
|
||||
assert_eq!(
|
||||
Fq::multiplicative_generator().pow([
|
||||
0x9e10460b6c3e7ea3,
|
||||
0xcbc0b548b438e546,
|
||||
0xdc2822db40c0ac2e,
|
||||
0x183227397098d014,
|
||||
]),
|
||||
Fq::two_adic_root_of_unity()
|
||||
);
|
||||
assert_eq!(
|
||||
Fq::two_adic_root_of_unity().pow([1 << FqParameters::TWO_ADICITY]),
|
||||
Fq::one()
|
||||
);
|
||||
assert!(Fq::multiplicative_generator().sqrt().is_none());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_ordering() {
|
||||
// BigInteger256's ordering is well-tested, but we still need to make sure the
|
||||
// Fq elements aren't being compared in Montgomery form.
|
||||
for i in 0..100 {
|
||||
assert!(Fq::from(BigInteger256::from(i + 1)) > Fq::from(BigInteger256::from(i)));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_legendre() {
|
||||
use ark_ff::fields::LegendreSymbol::*;
|
||||
|
||||
assert_eq!(QuadraticResidue, Fq::one().legendre());
|
||||
assert_eq!(Zero, Fq::zero().legendre());
|
||||
assert_eq!(
|
||||
QuadraticResidue,
|
||||
Fq::from(BigInteger256::from(4)).legendre()
|
||||
);
|
||||
assert_eq!(
|
||||
QuadraticNonResidue,
|
||||
Fq::from(BigInteger256::from(5)).legendre()
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_ordering() {
|
||||
let mut a = Fq2::new(Fq::zero(), Fq::zero());
|
||||
let mut b = a.clone();
|
||||
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
b.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Less);
|
||||
a.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
b.c1.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Less);
|
||||
a.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Less);
|
||||
a.c1.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Greater);
|
||||
b.c0.add_assign(&Fq::one());
|
||||
assert!(a.cmp(&b) == Ordering::Equal);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_basics() {
|
||||
assert_eq!(Fq2::new(Fq::zero(), Fq::zero(),), Fq2::zero());
|
||||
assert_eq!(Fq2::new(Fq::one(), Fq::zero(),), Fq2::one());
|
||||
assert!(Fq2::zero().is_zero());
|
||||
assert!(!Fq2::one().is_zero());
|
||||
assert!(!Fq2::new(Fq::zero(), Fq::one(),).is_zero());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2_legendre() {
|
||||
use ark_ff::fields::LegendreSymbol::*;
|
||||
|
||||
assert_eq!(Zero, Fq2::zero().legendre());
|
||||
// i^2 = -1
|
||||
let mut m1 = -Fq2::one();
|
||||
assert_eq!(QuadraticResidue, m1.legendre());
|
||||
m1 = Fq6Parameters::mul_fp2_by_nonresidue(&m1);
|
||||
assert_eq!(QuadraticNonResidue, m1.legendre());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq6_mul_by_1() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c1 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq6::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_1(&c1);
|
||||
b.mul_assign(&Fq6::new(Fq2::zero(), c1, Fq2::zero()));
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq6_mul_by_01() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c0 = Fq2::rand(&mut rng);
|
||||
let c1 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq6::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_01(&c0, &c1);
|
||||
b.mul_assign(&Fq6::new(c0, c1, Fq2::zero()));
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq12_mul_by_014() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c0 = Fq2::rand(&mut rng);
|
||||
let c1 = Fq2::rand(&mut rng);
|
||||
let c5 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq12::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_014(&c0, &c1, &c5);
|
||||
b.mul_assign(&Fq12::new(
|
||||
Fq6::new(c0, c1, Fq2::zero()),
|
||||
Fq6::new(Fq2::zero(), c5, Fq2::zero()),
|
||||
));
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq12_mul_by_034() {
|
||||
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
|
||||
|
||||
for _ in 0..1000 {
|
||||
let c0 = Fq2::rand(&mut rng);
|
||||
let c3 = Fq2::rand(&mut rng);
|
||||
let c4 = Fq2::rand(&mut rng);
|
||||
let mut a = Fq12::rand(&mut rng);
|
||||
let mut b = a;
|
||||
|
||||
a.mul_by_034(&c0, &c3, &c4);
|
||||
b.mul_assign(&Fq12::new(
|
||||
Fq6::new(c0, Fq2::zero(), Fq2::zero()),
|
||||
Fq6::new(c3, c4, Fq2::zero()),
|
||||
));
|
||||
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user