Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu>master
@ -0,0 +1,37 @@ |
|||||
|
[package] |
||||
|
name = "ark-grumpkin" |
||||
|
version = "0.4.0" |
||||
|
authors = [ "CPerezz", "arkworks contributors" ] |
||||
|
description = "The Grumpkin prime-order elliptic curve" |
||||
|
homepage = "https://arkworks.rs" |
||||
|
repository = "https://github.com/arkworks-rs/curves" |
||||
|
documentation = "https://docs.rs/ark-grumpkin/" |
||||
|
keywords = ["cryptography", "finite-fields", "elliptic-curves" ] |
||||
|
categories = ["cryptography"] |
||||
|
include = ["Cargo.toml", "src"] |
||||
|
license = "MIT/Apache-2.0" |
||||
|
edition = "2021" |
||||
|
|
||||
|
[dependencies] |
||||
|
ark-ff = { version = "0.4.0", default-features = false } |
||||
|
ark-ec = { version = "0.4.0", default-features = false } |
||||
|
ark-r1cs-std = { version = "0.4.0", default-features = false, optional = true } |
||||
|
ark-std = { version = "0.4.0", default-features = false } |
||||
|
ark-bn254 = { version = "0.4.0", path = "../bn254", default-features = false, features = [ "scalar_field", "curve" ] } |
||||
|
|
||||
|
[dev-dependencies] |
||||
|
ark-relations = { version = "0.4.0", default-features = false } |
||||
|
ark-serialize = { version = "0.4.0", default-features = false } |
||||
|
ark-algebra-test-templates = { version = "0.4.0", default-features = false } |
||||
|
ark-algebra-bench-templates = { version = "0.4.0", default-features = false } |
||||
|
ark-curve-constraint-tests = { path = "../curve-constraint-tests", default-features = false } |
||||
|
|
||||
|
[features] |
||||
|
default = [] |
||||
|
std = [ "ark-std/std", "ark-ff/std", "ark-ec/std" ] |
||||
|
r1cs = [ "ark-r1cs-std" ] |
||||
|
|
||||
|
[[bench]] |
||||
|
name = "grumpkin" |
||||
|
path = "benches/grumpkin.rs" |
||||
|
harness = false |
@ -0,0 +1 @@ |
|||||
|
../LICENSE-APACHE |
@ -0,0 +1 @@ |
|||||
|
../LICENSE-MIT |
@ -0,0 +1,9 @@ |
|||||
|
use ark_algebra_bench_templates::*;
|
||||
|
use ark_grumpkin::{fq::Fq, fr::Fr, Projective as G};
|
||||
|
|
||||
|
bench!(
|
||||
|
Name = "Grumpkin",
|
||||
|
Group = G,
|
||||
|
ScalarField = Fr,
|
||||
|
PrimeBaseField = Fq,
|
||||
|
);
|
@ -0,0 +1,28 @@ |
|||||
|
modulus = 21888242871839275222246405745257275088548364400416034343698204186575808495617 |
||||
|
|
||||
|
assert(modulus.is_prime()) |
||||
|
|
||||
|
Fp = GF(modulus) |
||||
|
|
||||
|
generator = Fp(0); |
||||
|
for i in range(0, 20): |
||||
|
i = Fp(i); |
||||
|
neg_i = Fp(-i) |
||||
|
if not(i.is_primitive_root() or neg_i.is_primitive_root()): |
||||
|
continue |
||||
|
elif i.is_primitive_root(): |
||||
|
assert(i.is_primitive_root()); |
||||
|
print("Generator: %d" % i) |
||||
|
generator = i |
||||
|
break |
||||
|
else: |
||||
|
assert(neg_i.is_primitive_root()); |
||||
|
print("Generator: %d" % neg_i) |
||||
|
generator = neg_i |
||||
|
break |
||||
|
|
||||
|
|
||||
|
two_adicity = valuation(modulus - 1, 2); |
||||
|
trace = (modulus - 1) / 2**two_adicity; |
||||
|
two_adic_root_of_unity = generator^trace |
||||
|
print("2-adic Root of Unity: %d " % two_adic_root_of_unity) |
@ -0,0 +1,28 @@ |
|||||
|
modulus = 21888242871839275222246405745257275088696311157297823662689037894645226208583 |
||||
|
|
||||
|
assert(modulus.is_prime()) |
||||
|
|
||||
|
Fp = GF(modulus) |
||||
|
|
||||
|
generator = Fp(0); |
||||
|
for i in range(0, 20): |
||||
|
i = Fp(i); |
||||
|
neg_i = Fp(-i) |
||||
|
if not(i.is_primitive_root() or neg_i.is_primitive_root()): |
||||
|
continue |
||||
|
elif i.is_primitive_root(): |
||||
|
assert(i.is_primitive_root()); |
||||
|
print("Generator: %d" % i) |
||||
|
generator = i |
||||
|
break |
||||
|
else: |
||||
|
assert(neg_i.is_primitive_root()); |
||||
|
print("Generator: %d" % neg_i) |
||||
|
generator = neg_i |
||||
|
break |
||||
|
|
||||
|
|
||||
|
two_adicity = valuation(modulus - 1, 2); |
||||
|
trace = (modulus - 1) / 2**two_adicity; |
||||
|
two_adic_root_of_unity = generator^trace |
||||
|
print("2-adic Root of Unity: %d " % two_adic_root_of_unity) |
@ -0,0 +1,11 @@ |
|||||
|
use ark_r1cs_std::groups::curves::short_weierstrass::ProjectiveVar;
|
||||
|
|
||||
|
use crate::{constraints::FBaseVar, *};
|
||||
|
|
||||
|
/// A group element in the Grumpkin prime-order group.
|
||||
|
pub type GVar = ProjectiveVar<GrumpkinConfig, FBaseVar>;
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test() {
|
||||
|
ark_curve_constraint_tests::curves::sw_test::<GrumpkinConfig, GVar>().unwrap();
|
||||
|
}
|
@ -0,0 +1,11 @@ |
|||||
|
use ark_r1cs_std::fields::fp::FpVar;
|
||||
|
|
||||
|
use crate::fq::Fq;
|
||||
|
|
||||
|
/// A variable that is the R1CS equivalent of `crate::Fq`.
|
||||
|
pub type FBaseVar = FpVar<Fq>;
|
||||
|
|
||||
|
#[test]
|
||||
|
fn test() {
|
||||
|
ark_curve_constraint_tests::fields::field_test::<_, _, FBaseVar>().unwrap();
|
||||
|
}
|
@ -0,0 +1,107 @@ |
|||||
|
//! This module implements the R1CS equivalent of `ark_grumpkin`.
|
||||
|
//!
|
||||
|
//! It implements field variables for `crate::Fq`,
|
||||
|
//! and group variables for `crate::Projective`.
|
||||
|
//!
|
||||
|
//! The field underlying these constraints is `crate::Fq`.
|
||||
|
//!
|
||||
|
//! # Examples
|
||||
|
//!
|
||||
|
//! One can perform standard algebraic operations on `FBaseVar`:
|
||||
|
//!
|
||||
|
//! ```
|
||||
|
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
||||
|
//! use ark_std::UniformRand;
|
||||
|
//! use ark_relations::r1cs::*;
|
||||
|
//! use ark_r1cs_std::prelude::*;
|
||||
|
//! use ark_grumpkin::{*, constraints::*};
|
||||
|
//!
|
||||
|
//! let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
|
//! // This rng is just for test purposes; do not use it
|
||||
|
//! // in real applications.
|
||||
|
//! let mut rng = ark_std::test_rng();
|
||||
|
//!
|
||||
|
//! // Generate some random `Fq` elements.
|
||||
|
//! let a_native = Fq::rand(&mut rng);
|
||||
|
//! let b_native = Fq::rand(&mut rng);
|
||||
|
//!
|
||||
|
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
|
//! let a = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_a"), || Ok(a_native))?;
|
||||
|
//! let b = FBaseVar::new_witness(ark_relations::ns!(cs, "generate_b"), || Ok(b_native))?;
|
||||
|
//!
|
||||
|
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
|
//! // constraints or variables.
|
||||
|
//! let a_const = FBaseVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
||||
|
//! let b_const = FBaseVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
||||
|
//!
|
||||
|
//! let one = FBaseVar::one();
|
||||
|
//! let zero = FBaseVar::zero();
|
||||
|
//!
|
||||
|
//! // Sanity check one + one = two
|
||||
|
//! let two = &one + &one + &zero;
|
||||
|
//! two.enforce_equal(&one.double()?)?;
|
||||
|
//!
|
||||
|
//! assert!(cs.is_satisfied()?);
|
||||
|
//!
|
||||
|
//! // Check that the value of &a + &b is correct.
|
||||
|
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
|
//!
|
||||
|
//! // Check that the value of &a * &b is correct.
|
||||
|
//! assert_eq!((&a * &b).value()?, a_native * &b_native);
|
||||
|
//!
|
||||
|
//! // Check that operations on variables and constants are equivalent.
|
||||
|
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
|
//! assert!(cs.is_satisfied()?);
|
||||
|
//! # Ok(())
|
||||
|
//! # }
|
||||
|
//! ```
|
||||
|
//!
|
||||
|
//! One can also perform standard algebraic operations on `GVar`:
|
||||
|
//!
|
||||
|
//! ```
|
||||
|
//! # fn main() -> Result<(), ark_relations::r1cs::SynthesisError> {
|
||||
|
//! # use ark_std::UniformRand;
|
||||
|
//! # use ark_relations::r1cs::*;
|
||||
|
//! # use ark_r1cs_std::prelude::*;
|
||||
|
//! # use ark_grumpkin::{*, constraints::*};
|
||||
|
//!
|
||||
|
//! # let cs = ConstraintSystem::<Fq>::new_ref();
|
||||
|
//! # let mut rng = ark_std::test_rng();
|
||||
|
//!
|
||||
|
//! // Generate some random `Projective` elements.
|
||||
|
//! let a_native = Projective::rand(&mut rng);
|
||||
|
//! let b_native = Projective::rand(&mut rng);
|
||||
|
//!
|
||||
|
//! // Allocate `a_native` and `b_native` as witness variables in `cs`.
|
||||
|
//! let a = GVar::new_witness(ark_relations::ns!(cs, "a"), || Ok(a_native))?;
|
||||
|
//! let b = GVar::new_witness(ark_relations::ns!(cs, "b"), || Ok(b_native))?;
|
||||
|
//!
|
||||
|
//! // Allocate `a_native` and `b_native` as constants in `cs`. This does not add any
|
||||
|
//! // constraints or variables.
|
||||
|
//! let a_const = GVar::new_constant(ark_relations::ns!(cs, "a_as_constant"), a_native)?;
|
||||
|
//! let b_const = GVar::new_constant(ark_relations::ns!(cs, "b_as_constant"), b_native)?;
|
||||
|
//!
|
||||
|
//! // This returns the identity.
|
||||
|
//! let zero = GVar::zero();
|
||||
|
//!
|
||||
|
//! // Sanity check one + one = two
|
||||
|
//! let two_a = &a + &a + &zero;
|
||||
|
//! two_a.enforce_equal(&a.double()?)?;
|
||||
|
//!
|
||||
|
//! assert!(cs.is_satisfied()?);
|
||||
|
//!
|
||||
|
//! // Check that the value of &a + &b is correct.
|
||||
|
//! assert_eq!((&a + &b).value()?, a_native + &b_native);
|
||||
|
//!
|
||||
|
//! // Check that operations on variables and constants are equivalent.
|
||||
|
//! (&a + &b).enforce_equal(&(&a_const + &b_const))?;
|
||||
|
//! assert!(cs.is_satisfied()?);
|
||||
|
//! # Ok(())
|
||||
|
//! # }
|
||||
|
//! ```
|
||||
|
|
||||
|
mod curves;
|
||||
|
mod fields;
|
||||
|
|
||||
|
pub use curves::*;
|
||||
|
pub use fields::*;
|
@ -0,0 +1,54 @@ |
|||||
|
// The parameters for the curve have been taken from
|
||||
|
// https://github.com/AztecProtocol/barretenberg/blob/97ccf76c42db581a8b8f8bfbcffe8ca015a3dd22/cpp/src/barretenberg/ecc/curves/grumpkin/grumpkin.hpp
|
||||
|
|
||||
|
use crate::{fq::Fq, fr::Fr};
|
||||
|
use ark_ec::{
|
||||
|
models::CurveConfig,
|
||||
|
short_weierstrass::{self as sw, SWCurveConfig},
|
||||
|
};
|
||||
|
use ark_ff::{AdditiveGroup, Field, MontFp, Zero};
|
||||
|
|
||||
|
#[cfg(test)]
|
||||
|
mod tests;
|
||||
|
|
||||
|
#[derive(Copy, Clone, Default, PartialEq, Eq)]
|
||||
|
pub struct GrumpkinConfig;
|
||||
|
|
||||
|
impl CurveConfig for GrumpkinConfig {
|
||||
|
type BaseField = Fq;
|
||||
|
type ScalarField = Fr;
|
||||
|
|
||||
|
/// COFACTOR = 1
|
||||
|
const COFACTOR: &'static [u64] = &[0x1];
|
||||
|
|
||||
|
/// COFACTOR_INV = 1
|
||||
|
const COFACTOR_INV: Fr = Fr::ONE;
|
||||
|
}
|
||||
|
|
||||
|
pub type Affine = sw::Affine<GrumpkinConfig>;
|
||||
|
pub type Projective = sw::Projective<GrumpkinConfig>;
|
||||
|
|
||||
|
impl SWCurveConfig for GrumpkinConfig {
|
||||
|
/// COEFF_A = 0
|
||||
|
const COEFF_A: Fq = Fq::ZERO;
|
||||
|
|
||||
|
/// COEFF_B = -17
|
||||
|
const COEFF_B: Fq = MontFp!("-17");
|
||||
|
|
||||
|
/// AFFINE_GENERATOR_COEFFS = (G1_GENERATOR_X, G1_GENERATOR_Y)
|
||||
|
const GENERATOR: Affine = Affine::new_unchecked(G_GENERATOR_X, G_GENERATOR_Y);
|
||||
|
|
||||
|
#[inline(always)]
|
||||
|
fn mul_by_a(_: Self::BaseField) -> Self::BaseField {
|
||||
|
Self::BaseField::zero()
|
||||
|
}
|
||||
|
}
|
||||
|
|
||||
|
/// G_GENERATOR_X = 1
|
||||
|
/// Encoded in Montgomery form, so the value here is R mod p.
|
||||
|
pub const G_GENERATOR_X: Fq = MontFp!("1");
|
||||
|
|
||||
|
/// G_GENERATOR_Y = sqrt(-16)
|
||||
|
/// Encoded in Montgomery form, so the value here is 2R mod p.
|
||||
|
pub const G_GENERATOR_Y: Fq =
|
||||
|
MontFp!("17631683881184975370165255887551781615748388533673675138860");
|
@ -0,0 +1,4 @@ |
|||||
|
use crate::Projective;
|
||||
|
use ark_algebra_test_templates::*;
|
||||
|
|
||||
|
test_group!(g1; Projective; sw);
|
@ -0,0 +1 @@ |
|||||
|
pub use ark_bn254::{Fr as Fq, FrConfig as FqConfig};
|
@ -0,0 +1 @@ |
|||||
|
pub use ark_bn254::{Fq as Fr, FqConfig as FrConfig};
|
@ -0,0 +1,8 @@ |
|||||
|
pub mod fq;
|
||||
|
pub use self::fq::*;
|
||||
|
|
||||
|
pub mod fr;
|
||||
|
pub use self::fr::*;
|
||||
|
|
||||
|
#[cfg(test)]
|
||||
|
mod tests;
|
@ -0,0 +1,5 @@ |
|||||
|
use crate::{Fq, Fr};
|
||||
|
use ark_algebra_test_templates::*;
|
||||
|
|
||||
|
test_field!(fr; Fr; mont_prime_field);
|
||||
|
test_field!(fq; Fq; mont_prime_field);
|
@ -0,0 +1,33 @@ |
|||||
|
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
|
#![deny(
|
||||
|
warnings,
|
||||
|
unused,
|
||||
|
future_incompatible,
|
||||
|
nonstandard_style,
|
||||
|
rust_2018_idioms
|
||||
|
)]
|
||||
|
#![forbid(unsafe_code)]
|
||||
|
|
||||
|
//! This library implements the prime-order curve Grumpkin, generated by
|
||||
|
//! Zachary J. Williamson from Aztec protocol. The main feature of this
|
||||
|
//! curve is that it forms a cycle with bn254, i.e. its scalar field and base
|
||||
|
//! field respectively are the base field and scalar field of bn254.
|
||||
|
//!
|
||||
|
//!
|
||||
|
//! Curve information:
|
||||
|
//! Grumpkin:
|
||||
|
//! * Base field: q =
|
||||
|
//! 21888242871839275222246405745257275088548364400416034343698204186575808495617
|
||||
|
//! * Scalar field: r =
|
||||
|
//! 21888242871839275222246405745257275088696311157297823662689037894645226208583
|
||||
|
//! * Curve equation: y^2 = x^3 - 17
|
||||
|
//! * Valuation(q - 1, 2) = 28
|
||||
|
//! * Valuation(r - 1, 2) = 1
|
||||
|
|
||||
|
#[cfg(feature = "r1cs")]
|
||||
|
pub mod constraints;
|
||||
|
mod curves;
|
||||
|
mod fields;
|
||||
|
|
||||
|
pub use curves::*;
|
||||
|
pub use fields::*;
|