mirror of
https://github.com/arnaucube/ark-curves-cherry-picked.git
synced 2026-01-08 23:11:29 +01:00
Simplify the field and curve tests using macros (#90)
* Simplify the field and curve tests using macros * minor * remove redundant code Co-authored-by: weikeng <w.k@berkeley.edu>
This commit is contained in:
@@ -17,114 +17,12 @@ use core::ops::{AddAssign, MulAssign};
|
||||
|
||||
use ark_algebra_test_templates::{
|
||||
curves::{curve_tests, edwards_tests, sw_tests},
|
||||
generate_bilinearity_test, generate_g1_generator_raw_test, generate_g1_test, generate_g2_test,
|
||||
groups::group_test,
|
||||
msm::test_var_base_msm,
|
||||
};
|
||||
|
||||
#[test]
|
||||
fn test_g1_projective_curve() {
|
||||
curve_tests::<G1Projective>();
|
||||
|
||||
sw_tests::<g1::Parameters>();
|
||||
edwards_tests::<g1::Parameters>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_projective_group() {
|
||||
let mut rng = test_rng();
|
||||
let a: G1Projective = rng.gen();
|
||||
let b: G1Projective = rng.gen();
|
||||
group_test(a, b);
|
||||
|
||||
let c = rng.gen();
|
||||
let d = rng.gen();
|
||||
group_test::<G1TEProjective>(c, d);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_generator() {
|
||||
let generator = G1Affine::prime_subgroup_generator();
|
||||
assert!(generator.is_on_curve());
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_projective_curve() {
|
||||
curve_tests::<G2Projective>();
|
||||
|
||||
sw_tests::<g2::Parameters>();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_projective_group() {
|
||||
let mut rng = test_rng();
|
||||
let a: G2Projective = rng.gen();
|
||||
let b: G2Projective = rng.gen();
|
||||
group_test(a, b);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g2_generator() {
|
||||
let generator = G2Affine::prime_subgroup_generator();
|
||||
assert!(generator.is_on_curve());
|
||||
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_bilinearity() {
|
||||
let mut rng = test_rng();
|
||||
let a: G1Projective = rng.gen();
|
||||
let b: G2Projective = rng.gen();
|
||||
let s: Fr = rng.gen();
|
||||
|
||||
let mut sa = a;
|
||||
sa.mul_assign(s);
|
||||
let mut sb = b;
|
||||
sb.mul_assign(s);
|
||||
|
||||
let ans1 = Bls12_377::pairing(sa, b);
|
||||
let ans2 = Bls12_377::pairing(a, sb);
|
||||
let ans3 = Bls12_377::pairing(a, b).pow(s.into_repr());
|
||||
|
||||
assert_eq!(ans1, ans2);
|
||||
assert_eq!(ans2, ans3);
|
||||
|
||||
assert_ne!(ans1, Fq12::one());
|
||||
assert_ne!(ans2, Fq12::one());
|
||||
assert_ne!(ans3, Fq12::one());
|
||||
|
||||
assert_eq!(ans1.pow(Fr::characteristic()), Fq12::one());
|
||||
assert_eq!(ans2.pow(Fr::characteristic()), Fq12::one());
|
||||
assert_eq!(ans3.pow(Fr::characteristic()), Fq12::one());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_g1_generator_raw() {
|
||||
let mut x = Fq::zero();
|
||||
let mut i = 0;
|
||||
loop {
|
||||
// y^2 = x^3 + b
|
||||
let mut rhs = x;
|
||||
rhs.square_in_place();
|
||||
rhs.mul_assign(&x);
|
||||
rhs.add_assign(&g1::Parameters::COEFF_B);
|
||||
|
||||
if let Some(y) = rhs.sqrt() {
|
||||
let p = G1Affine::new(x, if y < -y { y } else { -y }, false);
|
||||
assert!(!p.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
let g1 = p.scale_by_cofactor();
|
||||
if !g1.is_zero() {
|
||||
assert_eq!(i, 1);
|
||||
let g1 = G1Affine::from(g1);
|
||||
|
||||
assert!(g1.is_in_correct_subgroup_assuming_on_curve());
|
||||
|
||||
assert_eq!(g1, G1Affine::prime_subgroup_generator());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
i += 1;
|
||||
x.add_assign(&Fq::one());
|
||||
}
|
||||
}
|
||||
generate_g1_test!(bls12_377; curve_tests; sw_tests; edwards_tests; te_group_tests;);
|
||||
generate_g2_test!(bls12_377; curve_tests; sw_tests;);
|
||||
generate_bilinearity_test!(Bls12_377, Fq12);
|
||||
generate_g1_generator_raw_test!(bls12_377, 1);
|
||||
|
||||
@@ -15,80 +15,12 @@ use core::{
|
||||
|
||||
use crate::{Fq, Fq12, Fq2, Fq2Parameters, Fq6, Fq6Parameters, FqParameters, Fr};
|
||||
|
||||
use ark_algebra_test_templates::fields::*;
|
||||
use ark_algebra_test_templates::{
|
||||
fields::*, generate_field_serialization_test, generate_field_test,
|
||||
};
|
||||
|
||||
pub(crate) const ITERATIONS: usize = 5;
|
||||
|
||||
#[test]
|
||||
fn test_fr() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let a: Fr = rng.gen();
|
||||
let b: Fr = rng.gen();
|
||||
field_test(a, b);
|
||||
primefield_test::<Fr>();
|
||||
sqrt_field_test(b);
|
||||
let byte_size = a.serialized_size();
|
||||
field_serialization_test::<Fr>(byte_size);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let a: Fq = rng.gen();
|
||||
let b: Fq = rng.gen();
|
||||
field_test(a, b);
|
||||
primefield_test::<Fq>();
|
||||
sqrt_field_test(a);
|
||||
let byte_size = a.serialized_size();
|
||||
let (_, buffer_size) = buffer_bit_byte_size(Fq::size_in_bits());
|
||||
assert_eq!(byte_size, buffer_size);
|
||||
field_serialization_test::<Fq>(byte_size);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq2() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let a: Fq2 = rng.gen();
|
||||
let b: Fq2 = rng.gen();
|
||||
field_test(a, b);
|
||||
sqrt_field_test(a);
|
||||
}
|
||||
frobenius_test::<Fq2, _>(Fq::characteristic(), 13);
|
||||
let byte_size = Fq2::zero().serialized_size();
|
||||
field_serialization_test::<Fq2>(byte_size);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq6() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let g: Fq6 = rng.gen();
|
||||
let h: Fq6 = rng.gen();
|
||||
field_test(g, h);
|
||||
}
|
||||
|
||||
frobenius_test::<Fq6, _>(Fq::characteristic(), 13);
|
||||
let byte_size = Fq6::zero().serialized_size();
|
||||
field_serialization_test::<Fq6>(byte_size);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq12() {
|
||||
let mut rng = test_rng();
|
||||
for _ in 0..ITERATIONS {
|
||||
let g: Fq12 = rng.gen();
|
||||
let h: Fq12 = rng.gen();
|
||||
field_test(g, h);
|
||||
}
|
||||
frobenius_test::<Fq12, _>(Fq::characteristic(), 13);
|
||||
let byte_size = Fq12::zero().serialized_size();
|
||||
field_serialization_test::<Fq12>(byte_size);
|
||||
}
|
||||
generate_field_test!(bls12_377; fq2; fq6; fq12;);
|
||||
generate_field_serialization_test!(bls12_377; fq2; fq6; fq12;);
|
||||
|
||||
#[test]
|
||||
fn test_fq_repr_from() {
|
||||
@@ -129,218 +61,6 @@ fn test_fq_repr_num_bits() {
|
||||
assert_eq!(0, a.num_bits());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_add_assign() {
|
||||
// Test associativity
|
||||
|
||||
let mut rng = test_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Generate a, b, c and ensure (a + b) + c == a + (b + c).
|
||||
let a = Fq::rand(&mut rng);
|
||||
let b = Fq::rand(&mut rng);
|
||||
let c = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.add_assign(&c);
|
||||
|
||||
let mut tmp2 = b;
|
||||
tmp2.add_assign(&c);
|
||||
tmp2.add_assign(&a);
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_sub_assign() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure that (a - b) + (b - a) = 0.
|
||||
let a = Fq::rand(&mut rng);
|
||||
let b = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.sub_assign(&b);
|
||||
|
||||
let mut tmp2 = b;
|
||||
tmp2.sub_assign(&a);
|
||||
|
||||
tmp1.add_assign(&tmp2);
|
||||
assert!(tmp1.is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_mul_assign() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that (a * b) * c = a * (b * c)
|
||||
let a = Fq::rand(&mut rng);
|
||||
let b = Fq::rand(&mut rng);
|
||||
let c = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.mul_assign(&b);
|
||||
tmp1.mul_assign(&c);
|
||||
|
||||
let mut tmp2 = b;
|
||||
tmp2.mul_assign(&c);
|
||||
tmp2.mul_assign(&a);
|
||||
|
||||
assert_eq!(tmp1, tmp2);
|
||||
}
|
||||
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that r * (a + b + c) = r*a + r*b + r*c
|
||||
|
||||
let r = Fq::rand(&mut rng);
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let mut b = Fq::rand(&mut rng);
|
||||
let mut c = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp1 = a;
|
||||
tmp1.add_assign(&b);
|
||||
tmp1.add_assign(&c);
|
||||
tmp1.mul_assign(&r);
|
||||
|
||||
a.mul_assign(&r);
|
||||
b.mul_assign(&r);
|
||||
c.mul_assign(&r);
|
||||
|
||||
a.add_assign(&b);
|
||||
a.add_assign(&c);
|
||||
|
||||
assert_eq!(tmp1, a);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_squaring() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
for _ in 0..1000000 {
|
||||
// Ensure that (a * a) = a^2
|
||||
let a = Fq::rand(&mut rng);
|
||||
|
||||
let mut tmp = a;
|
||||
tmp.square_in_place();
|
||||
|
||||
let mut tmp2 = a;
|
||||
tmp2.mul_assign(&a);
|
||||
|
||||
assert_eq!(tmp, tmp2);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_inverse() {
|
||||
assert!(Fq::zero().inverse().is_none());
|
||||
|
||||
let mut rng = test_rng();
|
||||
|
||||
let one = Fq::one();
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure that a * a^-1 = 1
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let ainv = a.inverse().unwrap();
|
||||
a.mul_assign(&ainv);
|
||||
assert_eq!(a, one);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_double_in_place() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure doubling a is equivalent to adding a to itself.
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let mut b = a;
|
||||
b.add_assign(&a);
|
||||
a.double_in_place();
|
||||
assert_eq!(a, b);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_negate() {
|
||||
{
|
||||
let a = -Fq::zero();
|
||||
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
|
||||
let mut rng = test_rng();
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure (a - (-a)) = 0.
|
||||
let mut a = Fq::rand(&mut rng);
|
||||
let b = -a;
|
||||
a.add_assign(&b);
|
||||
|
||||
assert!(a.is_zero());
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_pow() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
for i in 0..1000 {
|
||||
// Exponentiate by various small numbers and ensure it consists with repeated
|
||||
// multiplication.
|
||||
let a = Fq::rand(&mut rng);
|
||||
let target = a.pow(&[i]);
|
||||
let mut c = Fq::one();
|
||||
for _ in 0..i {
|
||||
c.mul_assign(&a);
|
||||
}
|
||||
assert_eq!(c, target);
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Exponentiating by the modulus should have no effect in a prime field.
|
||||
let a = Fq::rand(&mut rng);
|
||||
|
||||
assert_eq!(a, a.pow(Fq::characteristic()));
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_sqrt() {
|
||||
let mut rng = test_rng();
|
||||
|
||||
assert_eq!(Fq::zero().sqrt().unwrap(), Fq::zero());
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure sqrt(a^2) = a or -a
|
||||
let a = Fq::rand(&mut rng);
|
||||
let nega = -a;
|
||||
let mut b = a;
|
||||
b.square_in_place();
|
||||
|
||||
let b = b.sqrt().unwrap();
|
||||
|
||||
assert!(a == b || nega == b);
|
||||
}
|
||||
|
||||
for _ in 0..1000 {
|
||||
// Ensure sqrt(a)^2 = a for random a
|
||||
let a = Fq::rand(&mut rng);
|
||||
|
||||
if let Some(mut tmp) = a.sqrt() {
|
||||
tmp.square_in_place();
|
||||
|
||||
assert_eq!(a, tmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fq_num_bits() {
|
||||
assert_eq!(FqParameters::MODULUS_BITS, 377);
|
||||
|
||||
Reference in New Issue
Block a user