Simplify the field and curve tests using macros (#90)

* Simplify the field and curve tests using macros

* minor

* remove redundant code

Co-authored-by: weikeng <w.k@berkeley.edu>
This commit is contained in:
Yuncong Hu
2021-12-06 00:03:29 -08:00
committed by GitHub
parent c5547905d0
commit 677b4ae751
18 changed files with 128 additions and 2064 deletions

View File

@@ -9,117 +9,20 @@ use ark_ff::{
BitIteratorBE, One, UniformRand, Zero,
};
use ark_serialize::CanonicalSerialize;
use ark_std::rand::Rng;
use ark_std::test_rng;
use ark_std::{rand::Rng, test_rng};
use core::ops::{AddAssign, MulAssign};
use crate::{g1, g2, Bls12_381, Fq, Fq12, Fq2, Fr, G1Affine, G1Projective, G2Affine, G2Projective};
use ark_algebra_test_templates::{curves::*, groups::*};
use ark_algebra_test_templates::{
curves::*, generate_bilinearity_test, generate_g1_generator_raw_test, generate_g1_test,
generate_g2_test, groups::*, msm::*,
};
use ark_ec::group::Group;
#[test]
fn test_g1_projective_curve() {
curve_tests::<G1Projective>();
sw_tests::<g1::Parameters>();
}
#[test]
fn test_g1_projective_group() {
let mut rng = test_rng();
let a: G1Projective = rng.gen();
let b: G1Projective = rng.gen();
group_test(a, b);
}
#[test]
fn test_g1_generator() {
let generator = G1Affine::prime_subgroup_generator();
assert!(generator.is_on_curve());
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
}
#[test]
fn test_g2_projective_curve() {
curve_tests::<G2Projective>();
sw_tests::<g2::Parameters>();
}
#[test]
fn test_g2_projective_group() {
let mut rng = test_rng();
let a: G2Projective = rng.gen();
let b: G2Projective = rng.gen();
group_test(a, b);
}
#[test]
fn test_g2_generator() {
let generator = G2Affine::prime_subgroup_generator();
assert!(generator.is_on_curve());
assert!(generator.is_in_correct_subgroup_assuming_on_curve());
}
#[test]
fn test_bilinearity() {
let mut rng = test_rng();
let a: G1Projective = rng.gen();
let b: G2Projective = rng.gen();
let s: Fr = rng.gen();
let mut sa = a;
sa.mul_assign(s);
let mut sb = b;
sb.mul_assign(s);
let ans1 = Bls12_381::pairing(sa, b);
let ans2 = Bls12_381::pairing(a, sb);
let ans3 = Bls12_381::pairing(a, b).pow(s.into_repr());
assert_eq!(ans1, ans2);
assert_eq!(ans2, ans3);
assert_ne!(ans1, Fq12::one());
assert_ne!(ans2, Fq12::one());
assert_ne!(ans3, Fq12::one());
assert_eq!(ans1.pow(Fr::characteristic()), Fq12::one());
assert_eq!(ans2.pow(Fr::characteristic()), Fq12::one());
assert_eq!(ans3.pow(Fr::characteristic()), Fq12::one());
}
#[test]
fn test_g1_generator_raw() {
let mut x = Fq::zero();
let mut i = 0;
loop {
// y^2 = x^3 + b
let mut rhs = x;
rhs.square_in_place();
rhs.mul_assign(&x);
rhs.add_assign(&g1::Parameters::COEFF_B);
if let Some(y) = rhs.sqrt() {
let p = G1Affine::new(x, if y < -y { y } else { -y }, false);
assert!(!p.is_in_correct_subgroup_assuming_on_curve());
let g1 = p.scale_by_cofactor();
if !g1.is_zero() {
assert_eq!(i, 4);
let g1 = G1Affine::from(g1);
assert!(g1.is_in_correct_subgroup_assuming_on_curve());
assert_eq!(g1, G1Affine::prime_subgroup_generator());
break;
}
}
i += 1;
x.add_assign(&Fq::one());
}
}
generate_g1_test!(bls12_381; curve_tests; sw_tests;);
generate_g2_test!(bls12_381; curve_tests; sw_tests;);
generate_bilinearity_test!(Bls12_381, Fq12);
generate_g1_generator_raw_test!(bls12_381, 4);
#[test]
fn test_g1_endomorphism_beta() {