Fix benchmark compilation and add benchmarks for Edwards curves

This commit is contained in:
Pratyush Mishra
2020-11-11 20:31:51 -08:00
parent e523a7e3fc
commit c4e4e18dee
13 changed files with 160 additions and 235 deletions

View File

@@ -1,19 +1,19 @@
macro_rules! ec_bench {
() => {
($projective:ty, $affine:ty) => {
#[bench]
fn bench_g1_rand(b: &mut ::test::Bencher) {
fn bench_rand(b: &mut ::test::Bencher) {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
b.iter(|| G1::rand(&mut rng));
b.iter(|| <$projective>::rand(&mut rng));
}
#[bench]
fn bench_g1_mul_assign(b: &mut ::test::Bencher) {
fn bench_mul_assign(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G1, Fr)> = (0..SAMPLES)
.map(|_| (G1::rand(&mut rng), Fr::rand(&mut rng)))
let v: Vec<($projective, Fr)> = (0..SAMPLES)
.map(|_| (<$projective>::rand(&mut rng), Fr::rand(&mut rng)))
.collect();
let mut count = 0;
@@ -26,13 +26,13 @@ macro_rules! ec_bench {
}
#[bench]
fn bench_g1_add_assign(b: &mut ::test::Bencher) {
fn bench_add_assign(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G1, G1)> = (0..SAMPLES)
.map(|_| (G1::rand(&mut rng), G1::rand(&mut rng)))
let v: Vec<($projective, $projective)> = (0..SAMPLES)
.map(|_| (<$projective>::rand(&mut rng), <$projective>::rand(&mut rng)))
.collect();
let mut count = 0;
@@ -45,13 +45,18 @@ macro_rules! ec_bench {
}
#[bench]
fn bench_g1_add_assign_mixed(b: &mut ::test::Bencher) {
fn bench_add_assign_mixed(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G1, G1Affine)> = (0..SAMPLES)
.map(|_| (G1::rand(&mut rng), G1::rand(&mut rng).into()))
let v: Vec<($projective, $affine)> = (0..SAMPLES)
.map(|_| {
(
<$projective>::rand(&mut rng),
<$projective>::rand(&mut rng).into(),
)
})
.collect();
let mut count = 0;
@@ -64,13 +69,13 @@ macro_rules! ec_bench {
}
#[bench]
fn bench_g1_double(b: &mut ::test::Bencher) {
fn bench_double(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G1, G1)> = (0..SAMPLES)
.map(|_| (G1::rand(&mut rng), G1::rand(&mut rng)))
let v: Vec<($projective, $projective)> = (0..SAMPLES)
.map(|_| (<$projective>::rand(&mut rng), <$projective>::rand(&mut rng)))
.collect();
let mut count = 0;
@@ -83,7 +88,7 @@ macro_rules! ec_bench {
}
#[bench]
fn bench_g1_deser(b: &mut ::test::Bencher) {
fn bench_deser(b: &mut ::test::Bencher) {
use ark_ec::ProjectiveCurve;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
const SAMPLES: usize = 1000;
@@ -91,7 +96,7 @@ macro_rules! ec_bench {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut num_bytes = 0;
let tmp = G1::rand(&mut rng).into_affine();
let tmp = <$projective>::rand(&mut rng).into_affine();
let v: Vec<_> = (0..SAMPLES)
.flat_map(|_| {
let mut bytes = Vec::with_capacity(1000);
@@ -105,20 +110,22 @@ macro_rules! ec_bench {
b.iter(|| {
count = (count + 1) % SAMPLES;
let index = count * num_bytes;
G1Affine::deserialize(&v[index..(index + num_bytes)]).unwrap()
<$affine>::deserialize(&v[index..(index + num_bytes)]).unwrap()
});
}
#[bench]
fn bench_g1_ser(b: &mut ::test::Bencher) {
fn bench_ser(b: &mut ::test::Bencher) {
use ark_ec::ProjectiveCurve;
use ark_serialize::CanonicalSerialize;
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut v: Vec<_> = (0..SAMPLES).map(|_| G1::rand(&mut rng)).collect();
let v = G1::batch_normalization_into_affine(v.as_mut_slice());
let mut v: Vec<_> = (0..SAMPLES)
.map(|_| <$projective>::rand(&mut rng))
.collect();
let v = <$projective>::batch_normalization_into_affine(v.as_mut_slice());
let mut bytes = Vec::with_capacity(1000);
let mut count = 0;
@@ -131,7 +138,7 @@ macro_rules! ec_bench {
}
#[bench]
fn bench_g1_deser_unchecked(b: &mut ::test::Bencher) {
fn bench_deser_unchecked(b: &mut ::test::Bencher) {
use ark_ec::ProjectiveCurve;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
const SAMPLES: usize = 1000;
@@ -139,7 +146,7 @@ macro_rules! ec_bench {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut num_bytes = 0;
let tmp = G1::rand(&mut rng).into_affine();
let tmp = <$projective>::rand(&mut rng).into_affine();
let v: Vec<_> = (0..SAMPLES)
.flat_map(|_| {
let mut bytes = Vec::with_capacity(1000);
@@ -153,196 +160,21 @@ macro_rules! ec_bench {
b.iter(|| {
count = (count + 1) % SAMPLES;
let index = count * num_bytes;
G1Affine::deserialize_unchecked(&v[index..(index + num_bytes)]).unwrap()
<$affine>::deserialize_unchecked(&v[index..(index + num_bytes)]).unwrap()
});
}
#[bench]
fn bench_g1_ser_unchecked(b: &mut ::test::Bencher) {
fn bench_ser_unchecked(b: &mut ::test::Bencher) {
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut v: Vec<_> = (0..SAMPLES).map(|_| G1::rand(&mut rng)).collect();
let v = G1::batch_normalization_into_affine(v.as_mut_slice());
let mut bytes = Vec::with_capacity(1000);
let mut count = 0;
b.iter(|| {
let tmp = v[count];
count = (count + 1) % SAMPLES;
bytes.clear();
tmp.serialize_unchecked(&mut bytes)
});
}
#[bench]
fn bench_g2_rand(b: &mut ::test::Bencher) {
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
b.iter(|| G2::rand(&mut rng));
}
#[bench]
fn bench_g2_mul_assign(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G2, Fr)> = (0..SAMPLES)
.map(|_| (G2::rand(&mut rng), Fr::rand(&mut rng)))
let mut v: Vec<_> = (0..SAMPLES)
.map(|_| <$projective>::rand(&mut rng))
.collect();
let mut count = 0;
b.iter(|| {
let mut tmp = v[count].0;
tmp *= v[count].1;
count = (count + 1) % SAMPLES;
tmp
});
}
#[bench]
fn bench_g2_add_assign(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G2, G2)> = (0..SAMPLES)
.map(|_| (G2::rand(&mut rng), G2::rand(&mut rng)))
.collect();
let mut count = 0;
b.iter(|| {
let mut tmp = v[count].0;
tmp.add_assign(&v[count].1);
count = (count + 1) % SAMPLES;
tmp
});
}
#[bench]
fn bench_g2_add_assign_mixed(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G2, G2Affine)> = (0..SAMPLES)
.map(|_| (G2::rand(&mut rng), G2::rand(&mut rng).into()))
.collect();
let mut count = 0;
b.iter(|| {
let mut tmp = v[count].0;
tmp.add_assign_mixed(&v[count].1);
count = (count + 1) % SAMPLES;
tmp
});
}
#[bench]
fn bench_g2_double(b: &mut ::test::Bencher) {
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let v: Vec<(G2, G2)> = (0..SAMPLES)
.map(|_| (G2::rand(&mut rng), G2::rand(&mut rng)))
.collect();
let mut count = 0;
b.iter(|| {
let mut tmp = v[count].0;
tmp.double_in_place();
count = (count + 1) % SAMPLES;
tmp
});
}
#[bench]
fn bench_g2_deser(b: &mut ::test::Bencher) {
use ark_ec::ProjectiveCurve;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut num_bytes = 0;
let tmp = G2::rand(&mut rng).into_affine();
let v: Vec<_> = (0..SAMPLES)
.flat_map(|_| {
let mut bytes = Vec::with_capacity(1000);
tmp.serialize(&mut bytes).unwrap();
num_bytes = bytes.len();
bytes
})
.collect();
let mut count = 0;
b.iter(|| {
count = (count + 1) % SAMPLES;
let index = count * num_bytes;
G2Affine::deserialize(&v[index..(index + num_bytes)]).unwrap()
});
}
#[bench]
fn bench_g2_ser(b: &mut ::test::Bencher) {
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut v: Vec<_> = (0..SAMPLES).map(|_| G2::rand(&mut rng)).collect();
let v = G2::batch_normalization_into_affine(v.as_mut_slice());
let mut bytes = Vec::with_capacity(1000);
let mut count = 0;
b.iter(|| {
let tmp = v[count];
count = (count + 1) % SAMPLES;
bytes.clear();
tmp.serialize(&mut bytes)
});
}
#[bench]
fn bench_g2_deser_unchecked(b: &mut ::test::Bencher) {
use ark_ec::ProjectiveCurve;
use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut num_bytes = 0;
let tmp = G2::rand(&mut rng).into_affine();
let v: Vec<_> = (0..SAMPLES)
.flat_map(|_| {
let mut bytes = Vec::with_capacity(1000);
tmp.serialize_unchecked(&mut bytes).unwrap();
num_bytes = bytes.len();
bytes
})
.collect();
let mut count = 0;
b.iter(|| {
count = (count + 1) % SAMPLES;
let index = count * num_bytes;
G2Affine::deserialize_unchecked(&v[index..(index + num_bytes)]).unwrap()
});
}
#[bench]
fn bench_g2_ser_unchecked(b: &mut ::test::Bencher) {
use ark_ec::ProjectiveCurve;
use ark_serialize::CanonicalSerialize;
const SAMPLES: usize = 1000;
let mut rng = XorShiftRng::seed_from_u64(1231275789u64);
let mut v: Vec<_> = (0..SAMPLES).map(|_| G2::rand(&mut rng)).collect();
let v = G2::batch_normalization_into_affine(v.as_mut_slice());
let v = <$projective>::batch_normalization_into_affine(v.as_mut_slice());
let mut bytes = Vec::with_capacity(1000);
let mut count = 0;