use ark_ff::{ biginteger::BigInteger256 as BigInteger, fields::{FftParameters, Fp256, Fp256Parameters, FpParameters}, }; pub type Fr = Fp256; pub struct FrParameters; impl Fp256Parameters for FrParameters {} impl FftParameters for FrParameters { type BigInt = BigInteger; /// Let `N` be the size of the multiplicative group defined by the field. /// Then `TWO_ADICITY` is the two-adicity of `N`, i.e. the integer `s` /// such that `N = 2^s * t` for some odd integer `t`. const TWO_ADICITY: u32 = 5; /// 2^s root of unity computed by GENERATOR^t /// 4740934665446857387895054948191089665295030226009829406950782728666658007874 #[rustfmt::skip] const TWO_ADIC_ROOT_OF_UNITY: BigInteger = BigInteger([ 0xa4dcdba087826b42, 0x6e4ab162f57f862a, 0xabc5492749348d6a, 0xa7b462035f8c169, ]); } impl FpParameters for FrParameters { /// The modulus of the field. /// MODULUS = 13108968793781547619861935127046491459309155893440570251786403306729687672801. #[rustfmt::skip] const MODULUS: BigInteger = BigInteger([ 0x74fd06b52876e7e1, 0xff8f870074190471, 0x0cce760202687600, 0x1cfb69d4ca675f52, ]); /// The number of bits needed to represent the `Self::MODULUS`. const MODULUS_BITS: u32 = 253; /// The number of bits that can be reliably stored. /// (Should equal `SELF::MODULUS_BITS - 1`) const CAPACITY: u32 = Self::MODULUS_BITS - 1; /// The number of bits that must be shaved from the beginning of /// the representation when randomly sampling. const REPR_SHAVE_BITS: u32 = 4; /// Let `M` be the power of 2^64 nearest to `Self::MODULUS_BITS`. Then /// `R = M % Self::MODULUS`. /// R = 10920338887063814464675503992315976178796737518116002025166357554075628257528 #[rustfmt::skip] const R: BigInteger = BigInteger([ 0x5817ca56bc48c0f8, 0x0383c7fc5f37dc74, 0x998c4fefecbc4ff8, 0x1824b159acc5056f, ]); /// R2 = R^2 % Self::MODULUS /// R2 = 4932290691328759802879919559207542894238895193980447506221046538067943049163 #[rustfmt::skip] const R2: BigInteger = BigInteger([ 0xdbb4f5d658db47cb, 0x40fa7ca27fecb938, 0xaa9e6daec0055cea, 0xae793ddb14aec7d ]); /// INV = -MODULUS^{-1} mod 2^64 /// INV = 17410672245482742751 const INV: u64 = 0xf19f22295cc063df; /// A multiplicative generator of the field. /// `Self::GENERATOR` is an element having multiplicative order /// `Self::MODULUS - 1`. /// n = 9962557815892774795293348142308860067333132192265356416788884706064406244838 #[rustfmt::skip] const GENERATOR: BigInteger = BigInteger([ 0x56b6f3ab7b616de6, 0x114f419d6c9083e5, 0xbf518d217780c4b9, 0x16069b9f45dbce7f, ]); /// (Self::MODULUS - 1) / 2 /// 6554484396890773809930967563523245729654577946720285125893201653364843836400 const MODULUS_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([ 0xba7e835a943b73f0, 0x7fc7c3803a0c8238, 0x06673b0101343b00, 0xe7db4ea6533afa9, ]); /// t for 2^s * t = MODULUS - 1, and t coprime to 2. /// t = 409655274805673363120685472720202858103411121670017820368325103335302739775 /// = (modulus-1)/2^5 const T: BigInteger = BigInteger([ 0x8ba7e835a943b73f, 0x07fc7c3803a0c823, 0x906673b0101343b0, 0xe7db4ea6533afa, ]); /// (t - 1) / 2 /// = 204827637402836681560342736360101429051705560835008910184162551667651369887 const T_MINUS_ONE_DIV_TWO: BigInteger = BigInteger([ 0xc5d3f41ad4a1db9f, 0x03fe3e1c01d06411, 0x483339d80809a1d8, 0x73eda753299d7d, ]); }